New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylc | GIF version |
Description: A syllogism inference combined with contraction. (Contributed by NM, 4-May-1994.) (Revised by NM, 13-Jul-2013.) |
Ref | Expression |
---|---|
sylc.1 | ⊢ (φ → ψ) |
sylc.2 | ⊢ (φ → χ) |
sylc.3 | ⊢ (ψ → (χ → θ)) |
Ref | Expression |
---|---|
sylc | ⊢ (φ → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylc.1 | . . 3 ⊢ (φ → ψ) | |
2 | sylc.2 | . . 3 ⊢ (φ → χ) | |
3 | sylc.3 | . . 3 ⊢ (ψ → (χ → θ)) | |
4 | 1, 2, 3 | syl2im 34 | . 2 ⊢ (φ → (φ → θ)) |
5 | 4 | pm2.43i 43 | 1 ⊢ (φ → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl3c 57 mpsyl 59 jc 139 2thd 231 jca 518 syl2anc 642 nfimd 1808 ax12 1935 ax12from12o 2156 equid1 2158 elex22 2871 elex2 2872 spcimdv 2937 spsbcd 3060 nnceleq 4431 tfinltfin 4502 sfinltfin 4536 sfin111 4537 phialllem1 4617 fvopab4t 5386 fvelrn 5414 frd 5923 refd 5928 enadjlem1 6060 enadj 6061 enprmaplem3 6079 1cnc 6140 |
Copyright terms: Public domain | W3C validator |