NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssbri GIF version

Theorem ssbri 4682
Description: Inference from a subclass relationship of binary relations. (The proof was shortened by Andrew Salmon, 9-Jul-2011.) (Contributed by NM, 28-Mar-2007.) (Revised by set.mm contributors, 9-Jul-2011.)
Hypothesis
Ref Expression
ssbri.1 A B
Assertion
Ref Expression
ssbri (CADCBD)

Proof of Theorem ssbri
StepHypRef Expression
1 ssid 3291 . 2 A A
2 ssbri.1 . . . 4 A B
32a1i 10 . . 3 (A AA B)
43ssbrd 4681 . 2 (A A → (CADCBD))
51, 4ax-mp 5 1 (CADCBD)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wss 3258   class class class wbr 4640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-br 4641
This theorem is referenced by:  brel  4831
  Copyright terms: Public domain W3C validator