NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssbrd GIF version

Theorem ssbrd 4681
Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.)
Hypothesis
Ref Expression
ssbrd.1 (φA B)
Assertion
Ref Expression
ssbrd (φ → (CADCBD))

Proof of Theorem ssbrd
StepHypRef Expression
1 ssbrd.1 . . 3 (φA B)
21sseld 3273 . 2 (φ → (C, D AC, D B))
3 df-br 4641 . 2 (CADC, D A)
4 df-br 4641 . 2 (CBDC, D B)
52, 3, 43imtr4g 261 1 (φ → (CADCBD))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710   wss 3258  cop 4562   class class class wbr 4640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-br 4641
This theorem is referenced by:  ssbri  4682  coss1  4873  coss2  4874
  Copyright terms: Public domain W3C validator