New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sspsstrd | GIF version |
Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr 3375. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
sspsstrd.1 | ⊢ (φ → A ⊆ B) |
sspsstrd.2 | ⊢ (φ → B ⊊ C) |
Ref | Expression |
---|---|
sspsstrd | ⊢ (φ → A ⊊ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspsstrd.1 | . 2 ⊢ (φ → A ⊆ B) | |
2 | sspsstrd.2 | . 2 ⊢ (φ → B ⊊ C) | |
3 | sspsstr 3375 | . 2 ⊢ ((A ⊆ B ∧ B ⊊ C) → A ⊊ C) | |
4 | 1, 2, 3 | syl2anc 642 | 1 ⊢ (φ → A ⊊ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3258 ⊊ wpss 3259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-pss 3262 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |