New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5com | GIF version |
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.) |
Ref | Expression |
---|---|
syl5com.1 | ⊢ (φ → ψ) |
syl5com.2 | ⊢ (χ → (ψ → θ)) |
Ref | Expression |
---|---|
syl5com | ⊢ (φ → (χ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5com.1 | . . 3 ⊢ (φ → ψ) | |
2 | 1 | a1d 22 | . 2 ⊢ (φ → (χ → ψ)) |
3 | syl5com.2 | . 2 ⊢ (χ → (ψ → θ)) | |
4 | 2, 3 | sylcom 25 | 1 ⊢ (φ → (χ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com12 27 syl5 28 ax16i 2046 ceqsalg 2884 cgsexg 2891 cgsex2g 2892 cgsex4g 2893 spc2egv 2942 spc3egv 2944 disjne 3597 uneqdifeq 3639 ncfinraise 4482 nnpweq 4524 fvimacnv 5404 |
Copyright terms: Public domain | W3C validator |