NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl5com GIF version

Theorem syl5com 26
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.)
Hypotheses
Ref Expression
syl5com.1 (φψ)
syl5com.2 (χ → (ψθ))
Assertion
Ref Expression
syl5com (φ → (χθ))

Proof of Theorem syl5com
StepHypRef Expression
1 syl5com.1 . . 3 (φψ)
21a1d 22 . 2 (φ → (χψ))
3 syl5com.2 . 2 (χ → (ψθ))
42, 3sylcom 25 1 (φ → (χθ))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com12  27  syl5  28  ax16i  2046  ceqsalg  2884  cgsexg  2891  cgsex2g  2892  cgsex4g  2893  spc2egv  2942  spc3egv  2944  disjne  3597  uneqdifeq  3639  ncfinraise  4482  nnpweq  4524  fvimacnv  5404
  Copyright terms: Public domain W3C validator