Proof of Theorem ax16i
| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1619 |
. . 3
⊢ Ⅎz x = y |
| 2 | | nfv 1619 |
. . 3
⊢ Ⅎx z = y |
| 3 | | ax-8 1675 |
. . 3
⊢ (x = z →
(x = y
→ z = y)) |
| 4 | 1, 2, 3 | cbv3 1982 |
. 2
⊢ (∀x x = y →
∀z
z = y) |
| 5 | | ax-8 1675 |
. . . . 5
⊢ (z = x →
(z = y
→ x = y)) |
| 6 | 5 | spimv 1990 |
. . . 4
⊢ (∀z z = y →
x = y) |
| 7 | | equcomi 1679 |
. . . . . 6
⊢ (x = y →
y = x) |
| 8 | | equcomi 1679 |
. . . . . . 7
⊢ (z = y →
y = z) |
| 9 | | ax-8 1675 |
. . . . . . 7
⊢ (y = z →
(y = x
→ z = x)) |
| 10 | 8, 9 | syl 15 |
. . . . . 6
⊢ (z = y →
(y = x
→ z = x)) |
| 11 | 7, 10 | syl5com 26 |
. . . . 5
⊢ (x = y →
(z = y
→ z = x)) |
| 12 | 11 | alimdv 1621 |
. . . 4
⊢ (x = y →
(∀z
z = y
→ ∀z z = x)) |
| 13 | 6, 12 | mpcom 32 |
. . 3
⊢ (∀z z = y →
∀z
z = x) |
| 14 | | equcomi 1679 |
. . . 4
⊢ (z = x →
x = z) |
| 15 | 14 | alimi 1559 |
. . 3
⊢ (∀z z = x →
∀z
x = z) |
| 16 | 13, 15 | syl 15 |
. 2
⊢ (∀z z = y →
∀z
x = z) |
| 17 | | ax16i.1 |
. . . . 5
⊢ (x = z →
(φ ↔ ψ)) |
| 18 | 17 | biimpcd 215 |
. . . 4
⊢ (φ → (x = z →
ψ)) |
| 19 | 18 | alimdv 1621 |
. . 3
⊢ (φ → (∀z x = z →
∀zψ)) |
| 20 | | ax16i.2 |
. . . . 5
⊢ (ψ → ∀xψ) |
| 21 | 20 | nfi 1551 |
. . . 4
⊢ Ⅎxψ |
| 22 | | nfv 1619 |
. . . 4
⊢ Ⅎzφ |
| 23 | 17 | biimprd 214 |
. . . . 5
⊢ (x = z →
(ψ → φ)) |
| 24 | 14, 23 | syl 15 |
. . . 4
⊢ (z = x →
(ψ → φ)) |
| 25 | 21, 22, 24 | cbv3 1982 |
. . 3
⊢ (∀zψ → ∀xφ) |
| 26 | 19, 25 | syl6com 31 |
. 2
⊢ (∀z x = z →
(φ → ∀xφ)) |
| 27 | 4, 16, 26 | 3syl 18 |
1
⊢ (∀x x = y →
(φ → ∀xφ)) |