New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ceqsalg | GIF version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
ceqsalg.1 | ⊢ Ⅎxψ |
ceqsalg.2 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
ceqsalg | ⊢ (A ∈ V → (∀x(x = A → φ) ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2870 | . . 3 ⊢ (A ∈ V → ∃x x = A) | |
2 | nfa1 1788 | . . . 4 ⊢ Ⅎx∀x(x = A → φ) | |
3 | ceqsalg.1 | . . . 4 ⊢ Ⅎxψ | |
4 | ceqsalg.2 | . . . . . . 7 ⊢ (x = A → (φ ↔ ψ)) | |
5 | 4 | biimpd 198 | . . . . . 6 ⊢ (x = A → (φ → ψ)) |
6 | 5 | a2i 12 | . . . . 5 ⊢ ((x = A → φ) → (x = A → ψ)) |
7 | 6 | sps 1754 | . . . 4 ⊢ (∀x(x = A → φ) → (x = A → ψ)) |
8 | 2, 3, 7 | exlimd 1806 | . . 3 ⊢ (∀x(x = A → φ) → (∃x x = A → ψ)) |
9 | 1, 8 | syl5com 26 | . 2 ⊢ (A ∈ V → (∀x(x = A → φ) → ψ)) |
10 | 4 | biimprcd 216 | . . 3 ⊢ (ψ → (x = A → φ)) |
11 | 3, 10 | alrimi 1765 | . 2 ⊢ (ψ → ∀x(x = A → φ)) |
12 | 9, 11 | impbid1 194 | 1 ⊢ (A ∈ V → (∀x(x = A → φ) ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: ceqsal 2885 sbc6g 3072 uniiunlem 3354 |
Copyright terms: Public domain | W3C validator |