| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > cgsexg | GIF version | ||
| Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.) |
| Ref | Expression |
|---|---|
| cgsexg.1 | ⊢ (x = A → χ) |
| cgsexg.2 | ⊢ (χ → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| cgsexg | ⊢ (A ∈ V → (∃x(χ ∧ φ) ↔ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgsexg.2 | . . . 4 ⊢ (χ → (φ ↔ ψ)) | |
| 2 | 1 | biimpa 470 | . . 3 ⊢ ((χ ∧ φ) → ψ) |
| 3 | 2 | exlimiv 1634 | . 2 ⊢ (∃x(χ ∧ φ) → ψ) |
| 4 | elisset 2870 | . . . 4 ⊢ (A ∈ V → ∃x x = A) | |
| 5 | cgsexg.1 | . . . . 5 ⊢ (x = A → χ) | |
| 6 | 5 | eximi 1576 | . . . 4 ⊢ (∃x x = A → ∃xχ) |
| 7 | 4, 6 | syl 15 | . . 3 ⊢ (A ∈ V → ∃xχ) |
| 8 | 1 | biimprcd 216 | . . . . 5 ⊢ (ψ → (χ → φ)) |
| 9 | 8 | ancld 536 | . . . 4 ⊢ (ψ → (χ → (χ ∧ φ))) |
| 10 | 9 | eximdv 1622 | . . 3 ⊢ (ψ → (∃xχ → ∃x(χ ∧ φ))) |
| 11 | 7, 10 | syl5com 26 | . 2 ⊢ (A ∈ V → (ψ → ∃x(χ ∧ φ))) |
| 12 | 3, 11 | impbid2 195 | 1 ⊢ (A ∈ V → (∃x(χ ∧ φ) ↔ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |