NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  uniiunlem GIF version

Theorem uniiunlem 3354
Description: A subset relationship useful for converting union to indexed union using dfiun2 4002 or dfiun2g 4000 and intersection to indexed intersection using dfiin2 4003. (Contributed by NM, 5-Oct-2006.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
Assertion
Ref Expression
uniiunlem (x A B D → (x A B C ↔ {y x A y = B} C))
Distinct variable groups:   x,y   y,A   y,B   x,C
Allowed substitution hints:   A(x)   B(x)   C(y)   D(x,y)

Proof of Theorem uniiunlem
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2359 . . . . . 6 (y = z → (y = Bz = B))
21rexbidv 2636 . . . . 5 (y = z → (x A y = Bx A z = B))
32cbvabv 2473 . . . 4 {y x A y = B} = {z x A z = B}
43sseq1i 3296 . . 3 ({y x A y = B} C ↔ {z x A z = B} C)
5 r19.23v 2731 . . . . 5 (x A (z = Bz C) ↔ (x A z = Bz C))
65albii 1566 . . . 4 (zx A (z = Bz C) ↔ z(x A z = Bz C))
7 ralcom4 2878 . . . 4 (x A z(z = Bz C) ↔ zx A (z = Bz C))
8 abss 3336 . . . 4 ({z x A z = B} Cz(x A z = Bz C))
96, 7, 83bitr4i 268 . . 3 (x A z(z = Bz C) ↔ {z x A z = B} C)
104, 9bitr4i 243 . 2 ({y x A y = B} Cx A z(z = Bz C))
11 nfv 1619 . . . . 5 z B C
12 eleq1 2413 . . . . 5 (z = B → (z CB C))
1311, 12ceqsalg 2884 . . . 4 (B D → (z(z = Bz C) ↔ B C))
1413ralimi 2690 . . 3 (x A B Dx A (z(z = Bz C) ↔ B C))
15 ralbi 2751 . . 3 (x A (z(z = Bz C) ↔ B C) → (x A z(z = Bz C) ↔ x A B C))
1614, 15syl 15 . 2 (x A B D → (x A z(z = Bz C) ↔ x A B C))
1710, 16syl5rbb 249 1 (x A B D → (x A B C ↔ {y x A y = B} C))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540   = wceq 1642   wcel 1710  {cab 2339  wral 2615  wrex 2616   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator