Step | Hyp | Ref
| Expression |
1 | | eqeq1 2359 |
. . . . . 6
⊢ (y = z →
(y = B
↔ z = B)) |
2 | 1 | rexbidv 2636 |
. . . . 5
⊢ (y = z →
(∃x
∈ A
y = B
↔ ∃x ∈ A z = B)) |
3 | 2 | cbvabv 2473 |
. . . 4
⊢ {y ∣ ∃x ∈ A y = B} =
{z ∣
∃x ∈ A z = B} |
4 | 3 | sseq1i 3296 |
. . 3
⊢ ({y ∣ ∃x ∈ A y = B} ⊆ C ↔
{z ∣
∃x ∈ A z = B} ⊆ C) |
5 | | r19.23v 2731 |
. . . . 5
⊢ (∀x ∈ A (z = B →
z ∈
C) ↔ (∃x ∈ A z = B →
z ∈
C)) |
6 | 5 | albii 1566 |
. . . 4
⊢ (∀z∀x ∈ A (z = B →
z ∈
C) ↔ ∀z(∃x ∈ A z = B →
z ∈
C)) |
7 | | ralcom4 2878 |
. . . 4
⊢ (∀x ∈ A ∀z(z = B →
z ∈
C) ↔ ∀z∀x ∈ A (z = B →
z ∈
C)) |
8 | | abss 3336 |
. . . 4
⊢ ({z ∣ ∃x ∈ A z = B} ⊆ C ↔
∀z(∃x ∈ A z = B → z ∈ C)) |
9 | 6, 7, 8 | 3bitr4i 268 |
. . 3
⊢ (∀x ∈ A ∀z(z = B →
z ∈
C) ↔ {z ∣ ∃x ∈ A z = B} ⊆ C) |
10 | 4, 9 | bitr4i 243 |
. 2
⊢ ({y ∣ ∃x ∈ A y = B} ⊆ C ↔
∀x
∈ A ∀z(z = B →
z ∈
C)) |
11 | | nfv 1619 |
. . . . 5
⊢ Ⅎz B ∈ C |
12 | | eleq1 2413 |
. . . . 5
⊢ (z = B →
(z ∈
C ↔ B ∈ C)) |
13 | 11, 12 | ceqsalg 2884 |
. . . 4
⊢ (B ∈ D → (∀z(z = B →
z ∈
C) ↔ B ∈ C)) |
14 | 13 | ralimi 2690 |
. . 3
⊢ (∀x ∈ A B ∈ D → ∀x ∈ A (∀z(z = B →
z ∈
C) ↔ B ∈ C)) |
15 | | ralbi 2751 |
. . 3
⊢ (∀x ∈ A (∀z(z = B →
z ∈
C) ↔ B ∈ C) → (∀x ∈ A ∀z(z = B →
z ∈
C) ↔ ∀x ∈ A B ∈ C)) |
16 | 14, 15 | syl 15 |
. 2
⊢ (∀x ∈ A B ∈ D → (∀x ∈ A ∀z(z = B →
z ∈
C) ↔ ∀x ∈ A B ∈ C)) |
17 | 10, 16 | syl5rbb 249 |
1
⊢ (∀x ∈ A B ∈ D → (∀x ∈ A B ∈ C ↔ {y
∣ ∃x ∈ A y = B} ⊆ C)) |