| Step | Hyp | Ref
| Expression |
| 1 | | snex 4112 |
. . . . . . 7
⊢ {A} ∈
V |
| 2 | | opkeq1 4060 |
. . . . . . . 8
⊢ (y = {A} →
⟪y, x⟫ = ⟪{A}, x⟫) |
| 3 | 2 | eleq1d 2419 |
. . . . . . 7
⊢ (y = {A} →
(⟪y, x⟫ ∈ Sk ↔ ⟪{A}, x⟫
∈ Sk )) |
| 4 | 1, 3 | rexsn 3769 |
. . . . . 6
⊢ (∃y ∈ {{A}}⟪y,
x⟫ ∈ Sk
↔ ⟪{A}, x⟫ ∈ Sk ) |
| 5 | | vex 2863 |
. . . . . . 7
⊢ x ∈
V |
| 6 | | elssetkg 4270 |
. . . . . . 7
⊢ ((A ∈ V ∧ x ∈ V) → (⟪{A}, x⟫
∈ Sk ↔ A ∈ x)) |
| 7 | 5, 6 | mpan2 652 |
. . . . . 6
⊢ (A ∈ V →
(⟪{A}, x⟫ ∈ Sk ↔ A ∈ x)) |
| 8 | 4, 7 | syl5rbb 249 |
. . . . 5
⊢ (A ∈ V →
(A ∈
x ↔ ∃y ∈ {{A}}⟪y,
x⟫ ∈ Sk
)) |
| 9 | 8 | abbidv 2468 |
. . . 4
⊢ (A ∈ V →
{x ∣
A ∈
x} = {x
∣ ∃y ∈ {{A}}⟪y,
x⟫ ∈ Sk
}) |
| 10 | | df-imak 4190 |
. . . 4
⊢ ( Sk “k
{{A}}) = {x ∣ ∃y ∈ {{A}}⟪y,
x⟫ ∈ Sk
} |
| 11 | 9, 10 | syl6eqr 2403 |
. . 3
⊢ (A ∈ V →
{x ∣
A ∈
x} = ( Sk “k
{{A}})) |
| 12 | | iftrue 3669 |
. . 3
⊢ (A ∈ V →
if(A ∈ V,
( Sk “k
{{A}}), ∅) = ( Sk “k
{{A}})) |
| 13 | 11, 12 | eqtr4d 2388 |
. 2
⊢ (A ∈ V →
{x ∣
A ∈
x} = if(A ∈ V, ( Sk “k
{{A}}), ∅)) |
| 14 | | elex 2868 |
. . . . . 6
⊢ (A ∈ x → A ∈ V) |
| 15 | 14 | con3i 127 |
. . . . 5
⊢ (¬ A ∈ V → ¬
A ∈
x) |
| 16 | 15 | alrimiv 1631 |
. . . 4
⊢ (¬ A ∈ V → ∀x ¬
A ∈
x) |
| 17 | | ab0 3570 |
. . . 4
⊢ ({x ∣ A ∈ x} = ∅ ↔
∀x
¬ A ∈
x) |
| 18 | 16, 17 | sylibr 203 |
. . 3
⊢ (¬ A ∈ V →
{x ∣
A ∈
x} = ∅) |
| 19 | | iffalse 3670 |
. . 3
⊢ (¬ A ∈ V →
if(A ∈ V,
( Sk “k
{{A}}), ∅) = ∅) |
| 20 | 18, 19 | eqtr4d 2388 |
. 2
⊢ (¬ A ∈ V →
{x ∣
A ∈
x} = if(A ∈ V, ( Sk “k
{{A}}), ∅)) |
| 21 | 13, 20 | pm2.61i 156 |
1
⊢ {x ∣ A ∈ x} = if(A ∈ V, ( Sk “k
{{A}}), ∅) |