New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbabg | GIF version |
Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
csbabg | ⊢ (A ∈ V → [A / x]{y ∣ φ} = {y ∣ [̣A / x]̣φ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbccom 3118 | . . . 4 ⊢ ([̣z / y]̣[̣A / x]̣φ ↔ [̣A / x]̣[̣z / y]̣φ) | |
2 | df-clab 2340 | . . . . 5 ⊢ (z ∈ {y ∣ [̣A / x]̣φ} ↔ [z / y][̣A / x]̣φ) | |
3 | sbsbc 3051 | . . . . 5 ⊢ ([z / y][̣A / x]̣φ ↔ [̣z / y]̣[̣A / x]̣φ) | |
4 | 2, 3 | bitri 240 | . . . 4 ⊢ (z ∈ {y ∣ [̣A / x]̣φ} ↔ [̣z / y]̣[̣A / x]̣φ) |
5 | df-clab 2340 | . . . . . 6 ⊢ (z ∈ {y ∣ φ} ↔ [z / y]φ) | |
6 | sbsbc 3051 | . . . . . 6 ⊢ ([z / y]φ ↔ [̣z / y]̣φ) | |
7 | 5, 6 | bitri 240 | . . . . 5 ⊢ (z ∈ {y ∣ φ} ↔ [̣z / y]̣φ) |
8 | 7 | sbcbii 3102 | . . . 4 ⊢ ([̣A / x]̣z ∈ {y ∣ φ} ↔ [̣A / x]̣[̣z / y]̣φ) |
9 | 1, 4, 8 | 3bitr4i 268 | . . 3 ⊢ (z ∈ {y ∣ [̣A / x]̣φ} ↔ [̣A / x]̣z ∈ {y ∣ φ}) |
10 | sbcel2g 3158 | . . 3 ⊢ (A ∈ V → ([̣A / x]̣z ∈ {y ∣ φ} ↔ z ∈ [A / x]{y ∣ φ})) | |
11 | 9, 10 | syl5rbb 249 | . 2 ⊢ (A ∈ V → (z ∈ [A / x]{y ∣ φ} ↔ z ∈ {y ∣ [̣A / x]̣φ})) |
12 | 11 | eqrdv 2351 | 1 ⊢ (A ∈ V → [A / x]{y ∣ φ} = {y ∣ [̣A / x]̣φ}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 [wsb 1648 ∈ wcel 1710 {cab 2339 [̣wsbc 3047 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: csbsng 3786 csbunig 3900 csbxpg 4814 csbrng 4967 |
Copyright terms: Public domain | W3C validator |