NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl6bir GIF version

Theorem syl6bir 220
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.)
Hypotheses
Ref Expression
syl6bir.1 (φ → (χψ))
syl6bir.2 (χθ)
Assertion
Ref Expression
syl6bir (φ → (ψθ))

Proof of Theorem syl6bir
StepHypRef Expression
1 syl6bir.1 . . 3 (φ → (χψ))
21biimprd 214 . 2 (φ → (ψχ))
3 syl6bir.2 . 2 (χθ)
42, 3syl6 29 1 (φ → (ψθ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  19.21t  1795  exdistrf  1971  ax11  2155  fnun  5190  ovigg  5597  fvmpti  5700  ce0addcnnul  6180  ce0nnulb  6183  ceclb  6184
  Copyright terms: Public domain W3C validator