New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl6bir | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
syl6bir.1 | ⊢ (φ → (χ ↔ ψ)) |
syl6bir.2 | ⊢ (χ → θ) |
Ref | Expression |
---|---|
syl6bir | ⊢ (φ → (ψ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bir.1 | . . 3 ⊢ (φ → (χ ↔ ψ)) | |
2 | 1 | biimprd 214 | . 2 ⊢ (φ → (ψ → χ)) |
3 | syl6bir.2 | . 2 ⊢ (χ → θ) | |
4 | 2, 3 | syl6 29 | 1 ⊢ (φ → (ψ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 19.21t 1795 exdistrf 1971 ax11 2155 fnun 5190 ovigg 5597 fvmpti 5700 ce0addcnnul 6180 ce0nnulb 6183 ceclb 6184 |
Copyright terms: Public domain | W3C validator |