New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl6bi | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
syl6bi.1 | ⊢ (φ → (ψ ↔ χ)) |
syl6bi.2 | ⊢ (χ → θ) |
Ref | Expression |
---|---|
syl6bi | ⊢ (φ → (ψ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bi.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | biimpd 198 | . 2 ⊢ (φ → (ψ → χ)) |
3 | syl6bi.2 | . 2 ⊢ (χ → θ) | |
4 | 2, 3 | syl6 29 | 1 ⊢ (φ → (ψ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: ax11i 1647 equveli 1988 eupickbi 2270 2eu2 2285 rgen2a 2681 reu6 3026 sseq0 3583 disjel 3598 disjpss 3602 uneqdifeq 3639 elinti 3936 pwadjoin 4120 preq12b 4128 nnsucelr 4429 sfindbl 4531 funimass2 5171 fconstfv 5457 oprabid 5551 enadj 6061 enpw1 6063 enprmaplem3 6079 nenpw1pwlem2 6086 1cnc 6140 ncspw1eu 6160 ce0nnulb 6183 letc 6232 ncslesuc 6268 nchoicelem3 6292 fnfreclem2 6319 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |