New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ceclb | GIF version |
Description: Biconditional closure law for cardinal exponentiation. Theorem XI.2.48 of [Rosser] p. 384. (Contributed by SF, 9-Mar-2015.) |
Ref | Expression |
---|---|
ceclb | ⊢ ((M ∈ NC ∧ N ∈ NC ) → (((M ↑c 0c) ≠ ∅ ∧ (N ↑c 0c) ≠ ∅) ↔ (M ↑c N) ∈ NC )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ce0nnul 6178 | . . . . 5 ⊢ (M ∈ NC → ((M ↑c 0c) ≠ ∅ ↔ ∃a℘1a ∈ M)) | |
2 | ce0nnul 6178 | . . . . 5 ⊢ (N ∈ NC → ((N ↑c 0c) ≠ ∅ ↔ ∃b℘1b ∈ N)) | |
3 | 1, 2 | bi2anan9 843 | . . . 4 ⊢ ((M ∈ NC ∧ N ∈ NC ) → (((M ↑c 0c) ≠ ∅ ∧ (N ↑c 0c) ≠ ∅) ↔ (∃a℘1a ∈ M ∧ ∃b℘1b ∈ N))) |
4 | eeanv 1913 | . . . 4 ⊢ (∃a∃b(℘1a ∈ M ∧ ℘1b ∈ N) ↔ (∃a℘1a ∈ M ∧ ∃b℘1b ∈ N)) | |
5 | 3, 4 | syl6bbr 254 | . . 3 ⊢ ((M ∈ NC ∧ N ∈ NC ) → (((M ↑c 0c) ≠ ∅ ∧ (N ↑c 0c) ≠ ∅) ↔ ∃a∃b(℘1a ∈ M ∧ ℘1b ∈ N))) |
6 | ncseqnc 6129 | . . . . . 6 ⊢ (M ∈ NC → (M = Nc ℘1a ↔ ℘1a ∈ M)) | |
7 | ncseqnc 6129 | . . . . . 6 ⊢ (N ∈ NC → (N = Nc ℘1b ↔ ℘1b ∈ N)) | |
8 | 6, 7 | bi2anan9 843 | . . . . 5 ⊢ ((M ∈ NC ∧ N ∈ NC ) → ((M = Nc ℘1a ∧ N = Nc ℘1b) ↔ (℘1a ∈ M ∧ ℘1b ∈ N))) |
9 | oveq12 5533 | . . . . . 6 ⊢ ((M = Nc ℘1a ∧ N = Nc ℘1b) → (M ↑c N) = ( Nc ℘1a ↑c Nc ℘1b)) | |
10 | vex 2863 | . . . . . . . 8 ⊢ a ∈ V | |
11 | vex 2863 | . . . . . . . 8 ⊢ b ∈ V | |
12 | 10, 11 | cenc 6182 | . . . . . . 7 ⊢ ( Nc ℘1a ↑c Nc ℘1b) = Nc (a ↑m b) |
13 | ovex 5552 | . . . . . . . 8 ⊢ (a ↑m b) ∈ V | |
14 | 13 | ncelncsi 6122 | . . . . . . 7 ⊢ Nc (a ↑m b) ∈ NC |
15 | 12, 14 | eqeltri 2423 | . . . . . 6 ⊢ ( Nc ℘1a ↑c Nc ℘1b) ∈ NC |
16 | 9, 15 | syl6eqel 2441 | . . . . 5 ⊢ ((M = Nc ℘1a ∧ N = Nc ℘1b) → (M ↑c N) ∈ NC ) |
17 | 8, 16 | syl6bir 220 | . . . 4 ⊢ ((M ∈ NC ∧ N ∈ NC ) → ((℘1a ∈ M ∧ ℘1b ∈ N) → (M ↑c N) ∈ NC )) |
18 | 17 | exlimdvv 1637 | . . 3 ⊢ ((M ∈ NC ∧ N ∈ NC ) → (∃a∃b(℘1a ∈ M ∧ ℘1b ∈ N) → (M ↑c N) ∈ NC )) |
19 | 5, 18 | sylbid 206 | . 2 ⊢ ((M ∈ NC ∧ N ∈ NC ) → (((M ↑c 0c) ≠ ∅ ∧ (N ↑c 0c) ≠ ∅) → (M ↑c N) ∈ NC )) |
20 | nulnnc 6119 | . . . . 5 ⊢ ¬ ∅ ∈ NC | |
21 | eleq1 2413 | . . . . 5 ⊢ ((M ↑c N) = ∅ → ((M ↑c N) ∈ NC ↔ ∅ ∈ NC )) | |
22 | 20, 21 | mtbiri 294 | . . . 4 ⊢ ((M ↑c N) = ∅ → ¬ (M ↑c N) ∈ NC ) |
23 | 22 | necon2ai 2562 | . . 3 ⊢ ((M ↑c N) ∈ NC → (M ↑c N) ≠ ∅) |
24 | ce0nnulb 6183 | . . 3 ⊢ ((M ∈ NC ∧ N ∈ NC ) → (((M ↑c 0c) ≠ ∅ ∧ (N ↑c 0c) ≠ ∅) ↔ (M ↑c N) ≠ ∅)) | |
25 | 23, 24 | syl5ibr 212 | . 2 ⊢ ((M ∈ NC ∧ N ∈ NC ) → ((M ↑c N) ∈ NC → ((M ↑c 0c) ≠ ∅ ∧ (N ↑c 0c) ≠ ∅))) |
26 | 19, 25 | impbid 183 | 1 ⊢ ((M ∈ NC ∧ N ∈ NC ) → (((M ↑c 0c) ≠ ∅ ∧ (N ↑c 0c) ≠ ∅) ↔ (M ↑c N) ∈ NC )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∅c0 3551 ℘1cpw1 4136 0cc0c 4375 (class class class)co 5526 ↑m cmap 6000 NC cncs 6089 Nc cnc 6092 ↑c cce 6097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-compose 5749 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-pw1fn 5767 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-map 6002 df-en 6030 df-ncs 6099 df-nc 6102 df-ce 6107 |
This theorem is referenced by: ce0nulnc 6185 cecl 6187 ceclr 6188 fce 6189 |
Copyright terms: Public domain | W3C validator |