NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl6eqssr GIF version

Theorem syl6eqssr 3323
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
syl6eqssr.1 (φB = A)
syl6eqssr.2 B C
Assertion
Ref Expression
syl6eqssr (φA C)

Proof of Theorem syl6eqssr
StepHypRef Expression
1 syl6eqssr.1 . . 3 (φB = A)
21eqcomd 2358 . 2 (φA = B)
3 syl6eqssr.2 . 2 B C
42, 3syl6eqss 3322 1 (φA C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator