New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqimss | GIF version |
Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
eqimss | ⊢ (A = B → A ⊆ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3288 | . 2 ⊢ (A = B ↔ (A ⊆ B ∧ B ⊆ A)) | |
2 | 1 | simplbi 446 | 1 ⊢ (A = B → A ⊆ B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: eqimss2 3325 sspss 3369 uneqin 3507 uneqdifeq 3639 pwpw0 3856 sssn 3865 eqsn 3868 snsspw 3878 pwsnALT 3883 unissint 3951 elpwuni 4054 iotassuni 4356 dmxpss 5053 xp11 5057 dmsnopss 5068 fnresdm 5193 fssxp 5233 ffdm 5235 fof 5270 dff1o2 5292 dff1o6 5476 fvmptss 5706 fvmptss2 5726 qsss 5987 enprmaplem6 6082 |
Copyright terms: Public domain | W3C validator |