New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqimss | GIF version |
Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
eqimss | ⊢ (A = B → A ⊆ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3287 | . 2 ⊢ (A = B ↔ (A ⊆ B ∧ B ⊆ A)) | |
2 | 1 | simplbi 446 | 1 ⊢ (A = B → A ⊆ B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ⊆ wss 3257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 |
This theorem is referenced by: eqimss2 3324 sspss 3368 uneqin 3506 uneqdifeq 3638 pwpw0 3855 sssn 3864 eqsn 3867 snsspw 3877 pwsnALT 3882 unissint 3950 elpwuni 4053 iotassuni 4355 dmxpss 5052 xp11 5056 dmsnopss 5067 fnresdm 5192 fssxp 5232 ffdm 5234 fof 5269 dff1o2 5291 dff1o6 5475 fvmptss 5705 fvmptss2 5725 qsss 5986 enprmaplem6 6081 |
Copyright terms: Public domain | W3C validator |