NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqtr2 GIF version

Theorem eqtr2 2371
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
eqtr2 ((A = B A = C) → B = C)

Proof of Theorem eqtr2
StepHypRef Expression
1 eqcom 2355 . 2 (A = BB = A)
2 eqtr 2370 . 2 ((B = A A = C) → B = C)
31, 2sylanb 458 1 ((A = B A = C) → B = C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346
This theorem is referenced by:  eqvinc  2967  dfxp2  5114  1stfo  5506  2ndfo  5507  swapf1o  5512  brtxp  5784  enprmaplem3  6079  peano4nc  6151  nchoicelem17  6306  fnfrec  6321
  Copyright terms: Public domain W3C validator