Proof of Theorem ffvresb
Step | Hyp | Ref
| Expression |
1 | | fdm 5227 |
. . . . . 6
⊢ ((F ↾ A):A–→B
→ dom (F ↾ A) =
A) |
2 | | dmres 4987 |
. . . . . . . 8
⊢ dom (F ↾ A) = (A ∩
dom F) |
3 | | inss2 3477 |
. . . . . . . 8
⊢ (A ∩ dom F)
⊆ dom F |
4 | 2, 3 | eqsstri 3302 |
. . . . . . 7
⊢ dom (F ↾ A) ⊆ dom F |
5 | 4 | a1i 10 |
. . . . . 6
⊢ ((F ↾ A):A–→B
→ dom (F ↾ A) ⊆ dom F) |
6 | 1, 5 | eqsstr3d 3307 |
. . . . 5
⊢ ((F ↾ A):A–→B
→ A ⊆ dom F) |
7 | 6 | sselda 3274 |
. . . 4
⊢ (((F ↾ A):A–→B
∧ x ∈ A) →
x ∈ dom
F) |
8 | | fvres 5343 |
. . . . . 6
⊢ (x ∈ A → ((F
↾ A)
‘x) = (F ‘x)) |
9 | 8 | adantl 452 |
. . . . 5
⊢ (((F ↾ A):A–→B
∧ x ∈ A) →
((F ↾
A) ‘x) = (F
‘x)) |
10 | | ffvelrn 5416 |
. . . . 5
⊢ (((F ↾ A):A–→B
∧ x ∈ A) →
((F ↾
A) ‘x) ∈ B) |
11 | 9, 10 | eqeltrrd 2428 |
. . . 4
⊢ (((F ↾ A):A–→B
∧ x ∈ A) →
(F ‘x) ∈ B) |
12 | 7, 11 | jca 518 |
. . 3
⊢ (((F ↾ A):A–→B
∧ x ∈ A) →
(x ∈ dom
F ∧
(F ‘x) ∈ B)) |
13 | 12 | ralrimiva 2698 |
. 2
⊢ ((F ↾ A):A–→B
→ ∀x ∈ A (x ∈ dom F ∧ (F
‘x) ∈ B)) |
14 | | simpl 443 |
. . . . . . 7
⊢ ((x ∈ dom F ∧ (F ‘x)
∈ B)
→ x ∈ dom F) |
15 | 14 | ralimi 2690 |
. . . . . 6
⊢ (∀x ∈ A (x ∈ dom F ∧ (F ‘x)
∈ B)
→ ∀x ∈ A x ∈ dom F) |
16 | | dfss3 3264 |
. . . . . 6
⊢ (A ⊆ dom F ↔ ∀x ∈ A x ∈ dom F) |
17 | 15, 16 | sylibr 203 |
. . . . 5
⊢ (∀x ∈ A (x ∈ dom F ∧ (F ‘x)
∈ B)
→ A ⊆ dom F) |
18 | | funfn 5137 |
. . . . . 6
⊢ (Fun F ↔ F Fn
dom F) |
19 | | fnssres 5197 |
. . . . . 6
⊢ ((F Fn dom F ∧ A ⊆ dom F)
→ (F ↾ A) Fn
A) |
20 | 18, 19 | sylanb 458 |
. . . . 5
⊢ ((Fun F ∧ A ⊆ dom F) → (F
↾ A) Fn
A) |
21 | 17, 20 | sylan2 460 |
. . . 4
⊢ ((Fun F ∧ ∀x ∈ A (x ∈ dom F ∧ (F ‘x)
∈ B))
→ (F ↾ A) Fn
A) |
22 | | simpr 447 |
. . . . . . . 8
⊢ ((x ∈ dom F ∧ (F ‘x)
∈ B)
→ (F ‘x) ∈ B) |
23 | 8 | eleq1d 2419 |
. . . . . . . 8
⊢ (x ∈ A → (((F
↾ A)
‘x) ∈ B ↔
(F ‘x) ∈ B)) |
24 | 22, 23 | syl5ibr 212 |
. . . . . . 7
⊢ (x ∈ A → ((x
∈ dom F
∧ (F
‘x) ∈ B) →
((F ↾
A) ‘x) ∈ B)) |
25 | 24 | ralimia 2688 |
. . . . . 6
⊢ (∀x ∈ A (x ∈ dom F ∧ (F ‘x)
∈ B)
→ ∀x ∈ A ((F ↾ A)
‘x) ∈ B) |
26 | 25 | adantl 452 |
. . . . 5
⊢ ((Fun F ∧ ∀x ∈ A (x ∈ dom F ∧ (F ‘x)
∈ B))
→ ∀x ∈ A ((F ↾ A)
‘x) ∈ B) |
27 | | fnfvrnss 5430 |
. . . . 5
⊢ (((F ↾ A) Fn A ∧ ∀x ∈ A ((F ↾ A)
‘x) ∈ B) → ran
(F ↾
A) ⊆
B) |
28 | 21, 26, 27 | syl2anc 642 |
. . . 4
⊢ ((Fun F ∧ ∀x ∈ A (x ∈ dom F ∧ (F ‘x)
∈ B))
→ ran (F ↾ A) ⊆ B) |
29 | | df-f 4792 |
. . . 4
⊢ ((F ↾ A):A–→B
↔ ((F ↾ A) Fn
A ∧ ran
(F ↾
A) ⊆
B)) |
30 | 21, 28, 29 | sylanbrc 645 |
. . 3
⊢ ((Fun F ∧ ∀x ∈ A (x ∈ dom F ∧ (F ‘x)
∈ B))
→ (F ↾ A):A–→B) |
31 | 30 | ex 423 |
. 2
⊢ (Fun F → (∀x ∈ A (x ∈ dom F ∧ (F ‘x)
∈ B)
→ (F ↾ A):A–→B)) |
32 | 13, 31 | impbid2 195 |
1
⊢ (Fun F → ((F
↾ A):A–→B
↔ ∀x ∈ A (x ∈ dom F ∧ (F
‘x) ∈ B))) |