NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylibrd GIF version

Theorem sylibrd 225
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.)
Hypotheses
Ref Expression
sylibrd.1 (φ → (ψχ))
sylibrd.2 (φ → (θχ))
Assertion
Ref Expression
sylibrd (φ → (ψθ))

Proof of Theorem sylibrd
StepHypRef Expression
1 sylibrd.1 . 2 (φ → (ψχ))
2 sylibrd.2 . . 3 (φ → (θχ))
32biimprd 214 . 2 (φ → (χθ))
41, 3syld 40 1 (φ → (ψθ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  3imtr4d  259  sbciegft  3077  eqsbc2  3104  fconstfv  5457  nmembers1  6272  nchoicelem12  6301
  Copyright terms: Public domain W3C validator