Proof of Theorem sbciegft
Step | Hyp | Ref
| Expression |
1 | | sbc5 3071 |
. . 3
⊢ ([̣A / x]̣φ
↔ ∃x(x = A ∧ φ)) |
2 | | bi1 178 |
. . . . . . . 8
⊢ ((φ ↔ ψ) → (φ → ψ)) |
3 | 2 | imim2i 13 |
. . . . . . 7
⊢ ((x = A →
(φ ↔ ψ)) → (x = A →
(φ → ψ))) |
4 | 3 | imp3a 420 |
. . . . . 6
⊢ ((x = A →
(φ ↔ ψ)) → ((x = A ∧ φ) →
ψ)) |
5 | 4 | alimi 1559 |
. . . . 5
⊢ (∀x(x = A →
(φ ↔ ψ)) → ∀x((x = A ∧ φ) →
ψ)) |
6 | | 19.23t 1800 |
. . . . . 6
⊢ (Ⅎxψ →
(∀x((x = A ∧ φ) → ψ) ↔ (∃x(x = A ∧ φ) →
ψ))) |
7 | 6 | biimpa 470 |
. . . . 5
⊢ ((Ⅎxψ ∧ ∀x((x = A ∧ φ) → ψ)) → (∃x(x = A ∧ φ) →
ψ)) |
8 | 5, 7 | sylan2 460 |
. . . 4
⊢ ((Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ))) → (∃x(x = A ∧ φ) →
ψ)) |
9 | 8 | 3adant1 973 |
. . 3
⊢ ((A ∈ V ∧ Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ))) → (∃x(x = A ∧ φ) →
ψ)) |
10 | 1, 9 | syl5bi 208 |
. 2
⊢ ((A ∈ V ∧ Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ))) → ([̣A / x]̣φ
→ ψ)) |
11 | | bi2 189 |
. . . . . . . 8
⊢ ((φ ↔ ψ) → (ψ → φ)) |
12 | 11 | imim2i 13 |
. . . . . . 7
⊢ ((x = A →
(φ ↔ ψ)) → (x = A →
(ψ → φ))) |
13 | 12 | com23 72 |
. . . . . 6
⊢ ((x = A →
(φ ↔ ψ)) → (ψ → (x = A →
φ))) |
14 | 13 | alimi 1559 |
. . . . 5
⊢ (∀x(x = A →
(φ ↔ ψ)) → ∀x(ψ → (x = A →
φ))) |
15 | | 19.21t 1795 |
. . . . . 6
⊢ (Ⅎxψ →
(∀x(ψ →
(x = A
→ φ)) ↔ (ψ → ∀x(x = A →
φ)))) |
16 | 15 | biimpa 470 |
. . . . 5
⊢ ((Ⅎxψ ∧ ∀x(ψ →
(x = A
→ φ))) → (ψ → ∀x(x = A →
φ))) |
17 | 14, 16 | sylan2 460 |
. . . 4
⊢ ((Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ))) → (ψ → ∀x(x = A →
φ))) |
18 | 17 | 3adant1 973 |
. . 3
⊢ ((A ∈ V ∧ Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ))) → (ψ → ∀x(x = A →
φ))) |
19 | | sbc6g 3072 |
. . . 4
⊢ (A ∈ V → ([̣A / x]̣φ
↔ ∀x(x = A → φ))) |
20 | 19 | 3ad2ant1 976 |
. . 3
⊢ ((A ∈ V ∧ Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ))) → ([̣A / x]̣φ
↔ ∀x(x = A → φ))) |
21 | 18, 20 | sylibrd 225 |
. 2
⊢ ((A ∈ V ∧ Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ))) → (ψ → [̣A / x]̣φ)) |
22 | 10, 21 | impbid 183 |
1
⊢ ((A ∈ V ∧ Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ))) → ([̣A / x]̣φ
↔ ψ)) |