New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylbird | GIF version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylbird.1 | ⊢ (φ → (χ ↔ ψ)) |
sylbird.2 | ⊢ (φ → (χ → θ)) |
Ref | Expression |
---|---|
sylbird | ⊢ (φ → (ψ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbird.1 | . . 3 ⊢ (φ → (χ ↔ ψ)) | |
2 | 1 | biimprd 214 | . 2 ⊢ (φ → (ψ → χ)) |
3 | sylbird.2 | . 2 ⊢ (φ → (χ → θ)) | |
4 | 2, 3 | syld 40 | 1 ⊢ (φ → (ψ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 3imtr3d 258 eqreu 3029 sfinltfin 4536 ov3 5600 erref 5960 enmap2lem3 6066 nenpw1pwlem2 6086 tlecg 6231 ce2le 6234 addcdi 6251 nchoicelem9 6298 |
Copyright terms: Public domain | W3C validator |