NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylbird GIF version

Theorem sylbird 226
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.)
Hypotheses
Ref Expression
sylbird.1 (φ → (χψ))
sylbird.2 (φ → (χθ))
Assertion
Ref Expression
sylbird (φ → (ψθ))

Proof of Theorem sylbird
StepHypRef Expression
1 sylbird.1 . . 3 (φ → (χψ))
21biimprd 214 . 2 (φ → (ψχ))
3 sylbird.2 . 2 (φ → (χθ))
42, 3syld 40 1 (φ → (ψθ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  3imtr3d  258  eqreu  3029  sfinltfin  4536  ov3  5600  erref  5960  enmap2lem3  6066  nenpw1pwlem2  6086  tlecg  6231  ce2le  6234  addcdi  6251  nchoicelem9  6298
  Copyright terms: Public domain W3C validator