Step | Hyp | Ref
| Expression |
1 | | finnc 6244 |
. . . 4
⊢ (( Spac ‘ Tc M)
∈ Fin ↔
Nc ( Spac
‘ Tc M) ∈ Nn ) |
2 | | risset 2662 |
. . . 4
⊢ ( Nc ( Spac
‘ Tc M) ∈ Nn ↔ ∃x ∈ Nn x = Nc ( Spac
‘ Tc M)) |
3 | 1, 2 | bitri 240 |
. . 3
⊢ (( Spac ‘ Tc M)
∈ Fin ↔
∃x ∈ Nn x = Nc ( Spac ‘ Tc M)) |
4 | | nchoicelem11 6300 |
. . . . . . 7
⊢ {t ∣ ∀m ∈ NC (t = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn )} ∈
V |
5 | | eqeq1 2359 |
. . . . . . . . 9
⊢ (t = 0c → (t = Nc ( Spac ‘ Tc m)
↔ 0c = Nc ( Spac ‘ Tc m))) |
6 | 5 | imbi1d 308 |
. . . . . . . 8
⊢ (t = 0c → ((t = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) ↔ (0c = Nc ( Spac
‘ Tc m) → Nc ( Spac ‘m) ∈ Nn ))) |
7 | 6 | ralbidv 2635 |
. . . . . . 7
⊢ (t = 0c → (∀m ∈ NC (t = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) ↔ ∀m ∈ NC
(0c = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ))) |
8 | | eqeq1 2359 |
. . . . . . . . 9
⊢ (t = n →
(t = Nc (
Spac ‘ Tc m)
↔ n = Nc
( Spac ‘ Tc m))) |
9 | 8 | imbi1d 308 |
. . . . . . . 8
⊢ (t = n →
((t = Nc (
Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) ↔ (n =
Nc ( Spac
‘ Tc m) → Nc ( Spac ‘m) ∈ Nn ))) |
10 | 9 | ralbidv 2635 |
. . . . . . 7
⊢ (t = n →
(∀m
∈ NC (t = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) ↔ ∀m ∈ NC (n = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ))) |
11 | | eqeq1 2359 |
. . . . . . . . . 10
⊢ (t = (n
+c 1c) → (t = Nc ( Spac ‘ Tc m)
↔ (n +c
1c) = Nc ( Spac ‘ Tc m))) |
12 | 11 | imbi1d 308 |
. . . . . . . . 9
⊢ (t = (n
+c 1c) → ((t = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) ↔ ((n
+c 1c) = Nc (
Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ))) |
13 | 12 | ralbidv 2635 |
. . . . . . . 8
⊢ (t = (n
+c 1c) → (∀m ∈ NC (t = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) ↔ ∀m ∈ NC ((n +c 1c) = Nc ( Spac
‘ Tc m) → Nc ( Spac ‘m) ∈ Nn ))) |
14 | | tceq 6159 |
. . . . . . . . . . . . 13
⊢ (m = k →
Tc m = Tc
k) |
15 | 14 | fveq2d 5333 |
. . . . . . . . . . . 12
⊢ (m = k → (
Spac ‘ Tc m) = (
Spac ‘ Tc k)) |
16 | 15 | nceqd 6111 |
. . . . . . . . . . 11
⊢ (m = k →
Nc ( Spac
‘ Tc m) = Nc ( Spac ‘ Tc k)) |
17 | 16 | eqeq2d 2364 |
. . . . . . . . . 10
⊢ (m = k →
((n +c
1c) = Nc ( Spac ‘ Tc m)
↔ (n +c
1c) = Nc ( Spac ‘ Tc k))) |
18 | | fveq2 5329 |
. . . . . . . . . . . 12
⊢ (m = k → (
Spac ‘m) = ( Spac
‘k)) |
19 | 18 | nceqd 6111 |
. . . . . . . . . . 11
⊢ (m = k →
Nc ( Spac
‘m) = Nc
( Spac ‘k)) |
20 | 19 | eleq1d 2419 |
. . . . . . . . . 10
⊢ (m = k → (
Nc ( Spac
‘m) ∈ Nn ↔ Nc ( Spac
‘k) ∈ Nn
)) |
21 | 17, 20 | imbi12d 311 |
. . . . . . . . 9
⊢ (m = k →
(((n +c
1c) = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) ↔ ((n
+c 1c) = Nc (
Spac ‘ Tc k)
→ Nc ( Spac ‘k) ∈ Nn ))) |
22 | 21 | cbvralv 2836 |
. . . . . . . 8
⊢ (∀m ∈ NC ((n +c 1c) = Nc ( Spac
‘ Tc m) → Nc ( Spac ‘m) ∈ Nn ) ↔ ∀k ∈ NC ((n +c 1c) = Nc ( Spac
‘ Tc k) → Nc ( Spac ‘k) ∈ Nn )) |
23 | 13, 22 | syl6bb 252 |
. . . . . . 7
⊢ (t = (n
+c 1c) → (∀m ∈ NC (t = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) ↔ ∀k ∈ NC ((n +c 1c) = Nc ( Spac
‘ Tc k) → Nc ( Spac ‘k) ∈ Nn ))) |
24 | | eqeq1 2359 |
. . . . . . . . 9
⊢ (t = x →
(t = Nc (
Spac ‘ Tc m)
↔ x = Nc
( Spac ‘ Tc m))) |
25 | 24 | imbi1d 308 |
. . . . . . . 8
⊢ (t = x →
((t = Nc (
Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) ↔ (x =
Nc ( Spac
‘ Tc m) → Nc ( Spac ‘m) ∈ Nn ))) |
26 | 25 | ralbidv 2635 |
. . . . . . 7
⊢ (t = x →
(∀m
∈ NC (t = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) ↔ ∀m ∈ NC (x = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ))) |
27 | | tccl 6161 |
. . . . . . . . . . . . 13
⊢ (m ∈ NC → Tc
m ∈ NC ) |
28 | | te0c 6238 |
. . . . . . . . . . . . 13
⊢ (m ∈ NC → ( Tc
m ↑c
0c) ∈ NC ) |
29 | | nchoicelem7 6296 |
. . . . . . . . . . . . 13
⊢ (( Tc m
∈ NC ∧ ( Tc
m ↑c
0c) ∈ NC ) → Nc ( Spac ‘ Tc m) = (
Nc ( Spac
‘(2c ↑c Tc m))
+c 1c)) |
30 | 27, 28, 29 | syl2anc 642 |
. . . . . . . . . . . 12
⊢ (m ∈ NC → Nc ( Spac ‘ Tc m) = (
Nc ( Spac
‘(2c ↑c Tc m))
+c 1c)) |
31 | | 0cnsuc 4402 |
. . . . . . . . . . . . 13
⊢ ( Nc ( Spac
‘(2c ↑c Tc m))
+c 1c) ≠
0c |
32 | 31 | a1i 10 |
. . . . . . . . . . . 12
⊢ (m ∈ NC → ( Nc ( Spac ‘(2c
↑c Tc m)) +c 1c) ≠
0c) |
33 | 30, 32 | eqnetrd 2535 |
. . . . . . . . . . 11
⊢ (m ∈ NC → Nc ( Spac ‘ Tc m)
≠ 0c) |
34 | 33 | necomd 2600 |
. . . . . . . . . 10
⊢ (m ∈ NC → 0c ≠ Nc ( Spac
‘ Tc m)) |
35 | | df-ne 2519 |
. . . . . . . . . 10
⊢
(0c ≠ Nc ( Spac ‘ Tc m)
↔ ¬ 0c = Nc ( Spac ‘ Tc m)) |
36 | 34, 35 | sylib 188 |
. . . . . . . . 9
⊢ (m ∈ NC → ¬ 0c = Nc ( Spac
‘ Tc m)) |
37 | 36 | pm2.21d 98 |
. . . . . . . 8
⊢ (m ∈ NC → (0c = Nc ( Spac
‘ Tc m) → Nc ( Spac ‘m) ∈ Nn )) |
38 | 37 | rgen 2680 |
. . . . . . 7
⊢ ∀m ∈ NC
(0c = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) |
39 | | 2nnc 6168 |
. . . . . . . . . . . . . . . . 17
⊢
2c ∈ Nn |
40 | | ceclnn1 6190 |
. . . . . . . . . . . . . . . . 17
⊢
((2c ∈ Nn ∧ k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
(2c ↑c k) ∈ NC ) |
41 | 39, 40 | mp3an1 1264 |
. . . . . . . . . . . . . . . 16
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
(2c ↑c k) ∈ NC ) |
42 | | tceq 6159 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (m = (2c ↑c
k) → Tc m =
Tc (2c
↑c k)) |
43 | 42 | fveq2d 5333 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (m = (2c ↑c
k) → ( Spac ‘ Tc m) = (
Spac ‘ Tc (2c
↑c k))) |
44 | 43 | nceqd 6111 |
. . . . . . . . . . . . . . . . . . 19
⊢ (m = (2c ↑c
k) → Nc (
Spac ‘ Tc m) =
Nc ( Spac
‘ Tc (2c
↑c k))) |
45 | 44 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . 18
⊢ (m = (2c ↑c
k) → (n = Nc ( Spac ‘ Tc m)
↔ n = Nc
( Spac ‘ Tc (2c
↑c k)))) |
46 | | fveq2 5329 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (m = (2c ↑c
k) → ( Spac ‘m) = ( Spac
‘(2c ↑c k))) |
47 | 46 | nceqd 6111 |
. . . . . . . . . . . . . . . . . . 19
⊢ (m = (2c ↑c
k) → Nc (
Spac ‘m) = Nc ( Spac ‘(2c
↑c k))) |
48 | 47 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . 18
⊢ (m = (2c ↑c
k) → ( Nc
( Spac ‘m) ∈ Nn ↔ Nc ( Spac ‘(2c
↑c k)) ∈ Nn
)) |
49 | 45, 48 | imbi12d 311 |
. . . . . . . . . . . . . . . . 17
⊢ (m = (2c ↑c
k) → ((n = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) ↔ (n =
Nc ( Spac
‘ Tc (2c
↑c k)) → Nc ( Spac
‘(2c ↑c k)) ∈ Nn ))) |
50 | 49 | rspcv 2952 |
. . . . . . . . . . . . . . . 16
⊢
((2c ↑c k) ∈ NC → (∀m ∈ NC (n = Nc ( Spac
‘ Tc m) → Nc ( Spac ‘m) ∈ Nn ) → (n =
Nc ( Spac
‘ Tc (2c
↑c k)) → Nc ( Spac
‘(2c ↑c k)) ∈ Nn ))) |
51 | 41, 50 | syl 15 |
. . . . . . . . . . . . . . 15
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
(∀m
∈ NC (n = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) → (n =
Nc ( Spac
‘ Tc (2c
↑c k)) → Nc ( Spac
‘(2c ↑c k)) ∈ Nn ))) |
52 | 51 | ancoms 439 |
. . . . . . . . . . . . . 14
⊢ (((k ↑c 0c)
∈ NC ∧ k ∈ NC ) → (∀m ∈ NC (n = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) → (n =
Nc ( Spac
‘ Tc (2c
↑c k)) → Nc ( Spac
‘(2c ↑c k)) ∈ Nn ))) |
53 | 52 | adantrl 696 |
. . . . . . . . . . . . 13
⊢ (((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) → (∀m ∈ NC (n = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) → (n =
Nc ( Spac
‘ Tc (2c
↑c k)) → Nc ( Spac
‘(2c ↑c k)) ∈ Nn ))) |
54 | | tccl 6161 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (k ∈ NC → Tc
k ∈ NC ) |
55 | | te0c 6238 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (k ∈ NC → ( Tc
k ↑c
0c) ∈ NC ) |
56 | | nchoicelem7 6296 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (( Tc k
∈ NC ∧ ( Tc
k ↑c
0c) ∈ NC ) → Nc ( Spac ‘ Tc k) = (
Nc ( Spac
‘(2c ↑c Tc k))
+c 1c)) |
57 | 54, 55, 56 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (k ∈ NC → Nc ( Spac ‘ Tc k) = (
Nc ( Spac
‘(2c ↑c Tc k))
+c 1c)) |
58 | 57 | adantl 452 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((n ∈ Nn ∧ k ∈ NC ) → Nc ( Spac ‘ Tc k) = (
Nc ( Spac
‘(2c ↑c Tc k))
+c 1c)) |
59 | 58 | adantl 452 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) → Nc ( Spac
‘ Tc k) = ( Nc ( Spac ‘(2c
↑c Tc k)) +c
1c)) |
60 | 59 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) →
((n +c
1c) = Nc ( Spac ‘ Tc k)
↔ (n +c
1c) = ( Nc ( Spac ‘(2c
↑c Tc k)) +c
1c))) |
61 | | nnnc 6147 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (n ∈ Nn → n ∈ NC
) |
62 | 61 | adantr 451 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((n ∈ Nn ∧ k ∈ NC ) → n ∈ NC
) |
63 | 62 | adantl 452 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) →
n ∈ NC ) |
64 | | fvex 5340 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ( Spac ‘(2c
↑c Tc k)) ∈
V |
65 | 64 | ncelncsi 6122 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ Nc ( Spac
‘(2c ↑c Tc k))
∈ NC |
66 | | peano4nc 6151 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((n ∈ NC ∧ Nc ( Spac
‘(2c ↑c Tc k))
∈ NC ) →
((n +c
1c) = ( Nc ( Spac ‘(2c
↑c Tc k)) +c 1c)
↔ n = Nc
( Spac ‘(2c
↑c Tc k)))) |
67 | 63, 65, 66 | sylancl 643 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) →
((n +c
1c) = ( Nc ( Spac ‘(2c
↑c Tc k)) +c 1c)
↔ n = Nc
( Spac ‘(2c
↑c Tc k)))) |
68 | | tce2 6237 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
Tc (2c
↑c k) =
(2c ↑c Tc k)) |
69 | 68 | ancoms 439 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((k ↑c 0c)
∈ NC ∧ k ∈ NC ) → Tc (2c
↑c k) =
(2c ↑c Tc k)) |
70 | 69 | adantrl 696 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) → Tc (2c
↑c k) =
(2c ↑c Tc k)) |
71 | 70 | fveq2d 5333 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) → ( Spac ‘ Tc (2c
↑c k)) = ( Spac ‘(2c
↑c Tc k))) |
72 | 71 | nceqd 6111 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) → Nc ( Spac
‘ Tc (2c
↑c k)) = Nc ( Spac
‘(2c ↑c Tc k))) |
73 | 72 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) →
(n = Nc (
Spac ‘ Tc (2c
↑c k)) ↔
n = Nc ( Spac ‘(2c
↑c Tc k)))) |
74 | 73 | biimprd 214 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) →
(n = Nc (
Spac ‘(2c
↑c Tc k)) → n =
Nc ( Spac
‘ Tc (2c
↑c k)))) |
75 | 67, 74 | sylbid 206 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) →
((n +c
1c) = ( Nc ( Spac ‘(2c
↑c Tc k)) +c 1c)
→ n = Nc
( Spac ‘ Tc (2c
↑c k)))) |
76 | 60, 75 | sylbid 206 |
. . . . . . . . . . . . . . . . . 18
⊢ (((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) →
((n +c
1c) = Nc ( Spac ‘ Tc k)
→ n = Nc
( Spac ‘ Tc (2c
↑c k)))) |
77 | 76 | imim1d 69 |
. . . . . . . . . . . . . . . . 17
⊢ (((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) →
((n = Nc (
Spac ‘ Tc (2c
↑c k)) → Nc ( Spac
‘(2c ↑c k)) ∈ Nn ) → ((n
+c 1c) = Nc (
Spac ‘ Tc k)
→ Nc ( Spac ‘(2c
↑c k)) ∈ Nn
))) |
78 | 77 | imp 418 |
. . . . . . . . . . . . . . . 16
⊢ ((((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) ∧ (n = Nc ( Spac
‘ Tc (2c
↑c k)) → Nc ( Spac
‘(2c ↑c k)) ∈ Nn )) → ((n
+c 1c) = Nc (
Spac ‘ Tc k)
→ Nc ( Spac ‘(2c
↑c k)) ∈ Nn
)) |
79 | | peano2 4404 |
. . . . . . . . . . . . . . . 16
⊢ ( Nc ( Spac
‘(2c ↑c k)) ∈ Nn → ( Nc ( Spac ‘(2c
↑c k))
+c 1c) ∈
Nn ) |
80 | 78, 79 | syl6 29 |
. . . . . . . . . . . . . . 15
⊢ ((((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) ∧ (n = Nc ( Spac
‘ Tc (2c
↑c k)) → Nc ( Spac
‘(2c ↑c k)) ∈ Nn )) → ((n
+c 1c) = Nc (
Spac ‘ Tc k)
→ ( Nc ( Spac ‘(2c
↑c k))
+c 1c) ∈
Nn )) |
81 | | nchoicelem7 6296 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
Nc ( Spac
‘k) = ( Nc ( Spac
‘(2c ↑c k)) +c
1c)) |
82 | 81 | ancoms 439 |
. . . . . . . . . . . . . . . . . 18
⊢ (((k ↑c 0c)
∈ NC ∧ k ∈ NC ) → Nc ( Spac
‘k) = ( Nc ( Spac
‘(2c ↑c k)) +c
1c)) |
83 | 82 | adantrl 696 |
. . . . . . . . . . . . . . . . 17
⊢ (((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) → Nc ( Spac
‘k) = ( Nc ( Spac
‘(2c ↑c k)) +c
1c)) |
84 | 83 | adantr 451 |
. . . . . . . . . . . . . . . 16
⊢ ((((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) ∧ (n = Nc ( Spac
‘ Tc (2c
↑c k)) → Nc ( Spac
‘(2c ↑c k)) ∈ Nn )) → Nc ( Spac ‘k) = ( Nc ( Spac ‘(2c
↑c k))
+c 1c)) |
85 | 84 | eleq1d 2419 |
. . . . . . . . . . . . . . 15
⊢ ((((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) ∧ (n = Nc ( Spac
‘ Tc (2c
↑c k)) → Nc ( Spac
‘(2c ↑c k)) ∈ Nn )) → ( Nc ( Spac ‘k) ∈ Nn ↔ ( Nc ( Spac ‘(2c
↑c k))
+c 1c) ∈
Nn )) |
86 | 80, 85 | sylibrd 225 |
. . . . . . . . . . . . . 14
⊢ ((((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) ∧ (n = Nc ( Spac
‘ Tc (2c
↑c k)) → Nc ( Spac
‘(2c ↑c k)) ∈ Nn )) → ((n
+c 1c) = Nc (
Spac ‘ Tc k)
→ Nc ( Spac ‘k) ∈ Nn )) |
87 | 86 | ex 423 |
. . . . . . . . . . . . 13
⊢ (((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) →
((n = Nc (
Spac ‘ Tc (2c
↑c k)) → Nc ( Spac
‘(2c ↑c k)) ∈ Nn ) → ((n
+c 1c) = Nc (
Spac ‘ Tc k)
→ Nc ( Spac ‘k) ∈ Nn ))) |
88 | 53, 87 | syld 40 |
. . . . . . . . . . . 12
⊢ (((k ↑c 0c)
∈ NC ∧ (n ∈ Nn ∧ k ∈ NC )) → (∀m ∈ NC (n = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) → ((n
+c 1c) = Nc (
Spac ‘ Tc k)
→ Nc ( Spac ‘k) ∈ Nn ))) |
89 | 88 | expimpd 586 |
. . . . . . . . . . 11
⊢ ((k ↑c 0c)
∈ NC →
(((n ∈
Nn ∧ k ∈ NC ) ∧ ∀m ∈ NC (n = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn )) → ((n
+c 1c) = Nc (
Spac ‘ Tc k)
→ Nc ( Spac ‘k) ∈ Nn ))) |
90 | | nchoicelem3 6292 |
. . . . . . . . . . . . . . . . 17
⊢ ((k ∈ NC ∧ ¬ (k ↑c 0c)
∈ NC ) → (
Spac ‘k) = {k}) |
91 | 90 | nceqd 6111 |
. . . . . . . . . . . . . . . 16
⊢ ((k ∈ NC ∧ ¬ (k ↑c 0c)
∈ NC ) →
Nc ( Spac
‘k) = Nc
{k}) |
92 | | vex 2863 |
. . . . . . . . . . . . . . . . . 18
⊢ k ∈
V |
93 | 92 | df1c3 6141 |
. . . . . . . . . . . . . . . . 17
⊢
1c = Nc {k} |
94 | | 1cnnc 4409 |
. . . . . . . . . . . . . . . . 17
⊢
1c ∈ Nn |
95 | 93, 94 | eqeltrri 2424 |
. . . . . . . . . . . . . . . 16
⊢ Nc {k} ∈ Nn |
96 | 91, 95 | syl6eqel 2441 |
. . . . . . . . . . . . . . 15
⊢ ((k ∈ NC ∧ ¬ (k ↑c 0c)
∈ NC ) →
Nc ( Spac
‘k) ∈ Nn
) |
97 | 96 | a1d 22 |
. . . . . . . . . . . . . 14
⊢ ((k ∈ NC ∧ ¬ (k ↑c 0c)
∈ NC ) →
((n +c
1c) = Nc ( Spac ‘ Tc k)
→ Nc ( Spac ‘k) ∈ Nn )) |
98 | 97 | expcom 424 |
. . . . . . . . . . . . 13
⊢ (¬ (k ↑c 0c)
∈ NC →
(k ∈
NC → ((n
+c 1c) = Nc (
Spac ‘ Tc k)
→ Nc ( Spac ‘k) ∈ Nn ))) |
99 | 98 | adantld 453 |
. . . . . . . . . . . 12
⊢ (¬ (k ↑c 0c)
∈ NC →
((n ∈
Nn ∧ k ∈ NC ) → ((n
+c 1c) = Nc (
Spac ‘ Tc k)
→ Nc ( Spac ‘k) ∈ Nn ))) |
100 | 99 | adantrd 454 |
. . . . . . . . . . 11
⊢ (¬ (k ↑c 0c)
∈ NC →
(((n ∈
Nn ∧ k ∈ NC ) ∧ ∀m ∈ NC (n = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn )) → ((n
+c 1c) = Nc (
Spac ‘ Tc k)
→ Nc ( Spac ‘k) ∈ Nn ))) |
101 | 89, 100 | pm2.61i 156 |
. . . . . . . . . 10
⊢ (((n ∈ Nn ∧ k ∈ NC ) ∧ ∀m ∈ NC (n = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn )) → ((n
+c 1c) = Nc (
Spac ‘ Tc k)
→ Nc ( Spac ‘k) ∈ Nn )) |
102 | 101 | an32s 779 |
. . . . . . . . 9
⊢ (((n ∈ Nn ∧ ∀m ∈ NC (n = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn )) ∧ k ∈ NC ) → ((n
+c 1c) = Nc (
Spac ‘ Tc k)
→ Nc ( Spac ‘k) ∈ Nn )) |
103 | 102 | ralrimiva 2698 |
. . . . . . . 8
⊢ ((n ∈ Nn ∧ ∀m ∈ NC (n = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn )) → ∀k ∈ NC ((n +c 1c) = Nc ( Spac
‘ Tc k) → Nc ( Spac ‘k) ∈ Nn )) |
104 | 103 | ex 423 |
. . . . . . 7
⊢ (n ∈ Nn → (∀m ∈ NC (n = Nc ( Spac
‘ Tc m) → Nc ( Spac ‘m) ∈ Nn ) → ∀k ∈ NC ((n +c 1c) = Nc ( Spac
‘ Tc k) → Nc ( Spac ‘k) ∈ Nn ))) |
105 | 4, 7, 10, 23, 26, 38, 104 | finds 4412 |
. . . . . 6
⊢ (x ∈ Nn → ∀m ∈ NC (x = Nc ( Spac
‘ Tc m) → Nc ( Spac ‘m) ∈ Nn )) |
106 | | tceq 6159 |
. . . . . . . . . . 11
⊢ (m = M →
Tc m = Tc
M) |
107 | 106 | fveq2d 5333 |
. . . . . . . . . 10
⊢ (m = M → (
Spac ‘ Tc m) = (
Spac ‘ Tc M)) |
108 | 107 | nceqd 6111 |
. . . . . . . . 9
⊢ (m = M →
Nc ( Spac
‘ Tc m) = Nc ( Spac ‘ Tc M)) |
109 | 108 | eqeq2d 2364 |
. . . . . . . 8
⊢ (m = M →
(x = Nc (
Spac ‘ Tc m)
↔ x = Nc
( Spac ‘ Tc M))) |
110 | | fveq2 5329 |
. . . . . . . . . . 11
⊢ (m = M → (
Spac ‘m) = ( Spac
‘M)) |
111 | 110 | nceqd 6111 |
. . . . . . . . . 10
⊢ (m = M →
Nc ( Spac
‘m) = Nc
( Spac ‘M)) |
112 | 111 | eleq1d 2419 |
. . . . . . . . 9
⊢ (m = M → (
Nc ( Spac
‘m) ∈ Nn ↔ Nc ( Spac
‘M) ∈ Nn
)) |
113 | | finnc 6244 |
. . . . . . . . 9
⊢ (( Spac ‘M) ∈ Fin ↔ Nc ( Spac ‘M) ∈ Nn ) |
114 | 112, 113 | syl6bbr 254 |
. . . . . . . 8
⊢ (m = M → (
Nc ( Spac
‘m) ∈ Nn ↔ ( Spac ‘M) ∈ Fin )) |
115 | 109, 114 | imbi12d 311 |
. . . . . . 7
⊢ (m = M →
((x = Nc (
Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) ↔ (x =
Nc ( Spac
‘ Tc M) → ( Spac ‘M) ∈ Fin ))) |
116 | 115 | rspccv 2953 |
. . . . . 6
⊢ (∀m ∈ NC (x = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) → (M ∈ NC → (x = Nc ( Spac ‘ Tc M)
→ ( Spac ‘M) ∈ Fin ))) |
117 | 105, 116 | syl 15 |
. . . . 5
⊢ (x ∈ Nn → (M ∈ NC → (x = Nc ( Spac ‘ Tc M)
→ ( Spac ‘M) ∈ Fin ))) |
118 | 117 | com23 72 |
. . . 4
⊢ (x ∈ Nn → (x = Nc ( Spac
‘ Tc M) → (M
∈ NC → (
Spac ‘M) ∈ Fin ))) |
119 | 118 | rexlimiv 2733 |
. . 3
⊢ (∃x ∈ Nn x = Nc ( Spac ‘ Tc M)
→ (M ∈ NC → ( Spac ‘M) ∈ Fin )) |
120 | 3, 119 | sylbi 187 |
. 2
⊢ (( Spac ‘ Tc M)
∈ Fin →
(M ∈
NC → ( Spac ‘M) ∈ Fin )) |
121 | 120 | impcom 419 |
1
⊢ ((M ∈ NC ∧ ( Spac ‘ Tc M)
∈ Fin ) → (
Spac ‘M) ∈ Fin ) |