New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3imtr4d | GIF version |
Description: More general version of 3imtr4i 257. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
Ref | Expression |
---|---|
3imtr4d.1 | ⊢ (φ → (ψ → χ)) |
3imtr4d.2 | ⊢ (φ → (θ ↔ ψ)) |
3imtr4d.3 | ⊢ (φ → (τ ↔ χ)) |
Ref | Expression |
---|---|
3imtr4d | ⊢ (φ → (θ → τ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4d.2 | . 2 ⊢ (φ → (θ ↔ ψ)) | |
2 | 3imtr4d.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
3 | 3imtr4d.3 | . . 3 ⊢ (φ → (τ ↔ χ)) | |
4 | 2, 3 | sylibrd 225 | . 2 ⊢ (φ → (ψ → τ)) |
5 | 1, 4 | sylbid 206 | 1 ⊢ (φ → (θ → τ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: ax11indalem 2197 ax11inda2ALT 2198 leltfintr 4459 ltfintr 4460 ltfintri 4467 ltlefin 4469 tfinltfinlem1 4501 vfinspsslem1 4551 pw1fnf1o 5856 enprmaplem3 6079 nchoicelem9 6298 |
Copyright terms: Public domain | W3C validator |