New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vtocl2ga | GIF version |
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
vtocl2ga.1 | ⊢ (x = A → (φ ↔ ψ)) |
vtocl2ga.2 | ⊢ (y = B → (ψ ↔ χ)) |
vtocl2ga.3 | ⊢ ((x ∈ C ∧ y ∈ D) → φ) |
Ref | Expression |
---|---|
vtocl2ga | ⊢ ((A ∈ C ∧ B ∈ D) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2490 | . 2 ⊢ ℲxA | |
2 | nfcv 2490 | . 2 ⊢ ℲyA | |
3 | nfcv 2490 | . 2 ⊢ ℲyB | |
4 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
5 | nfv 1619 | . 2 ⊢ Ⅎyχ | |
6 | vtocl2ga.1 | . 2 ⊢ (x = A → (φ ↔ ψ)) | |
7 | vtocl2ga.2 | . 2 ⊢ (y = B → (ψ ↔ χ)) | |
8 | vtocl2ga.3 | . 2 ⊢ ((x ∈ C ∧ y ∈ D) → φ) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | vtocl2gaf 2922 | 1 ⊢ ((A ∈ C ∧ B ∈ D) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: f1fveq 5474 caovcan 5629 |
Copyright terms: Public domain | W3C validator |