New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > xpeq12d | GIF version |
Description: Equality deduction for cross product. (Contributed by NM, 8-Dec-2013.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (φ → A = B) |
xpeq12d.2 | ⊢ (φ → C = D) |
Ref | Expression |
---|---|
xpeq12d | ⊢ (φ → (A × C) = (B × D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (φ → A = B) | |
2 | xpeq12d.2 | . 2 ⊢ (φ → C = D) | |
3 | xpeq12 4803 | . 2 ⊢ ((A = B ∧ C = D) → (A × C) = (B × D)) | |
4 | 1, 2, 3 | syl2anc 642 | 1 ⊢ (φ → (A × C) = (B × D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 × cxp 4770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-opab 4623 df-xp 4784 |
This theorem is referenced by: opeliunxp 4820 fmpt2x 5730 |
Copyright terms: Public domain | W3C validator |