New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfxp | GIF version |
Description: Bound-variable hypothesis builder for cross product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfxp.1 | ⊢ ℲxA |
nfxp.2 | ⊢ ℲxB |
Ref | Expression |
---|---|
nfxp | ⊢ Ⅎx(A × B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 4785 | . 2 ⊢ (A × B) = {〈y, z〉 ∣ (y ∈ A ∧ z ∈ B)} | |
2 | nfxp.1 | . . . . 5 ⊢ ℲxA | |
3 | 2 | nfcri 2484 | . . . 4 ⊢ Ⅎx y ∈ A |
4 | nfxp.2 | . . . . 5 ⊢ ℲxB | |
5 | 4 | nfcri 2484 | . . . 4 ⊢ Ⅎx z ∈ B |
6 | 3, 5 | nfan 1824 | . . 3 ⊢ Ⅎx(y ∈ A ∧ z ∈ B) |
7 | 6 | nfopab 4628 | . 2 ⊢ Ⅎx{〈y, z〉 ∣ (y ∈ A ∧ z ∈ B)} |
8 | 1, 7 | nfcxfr 2487 | 1 ⊢ Ⅎx(A × B) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∈ wcel 1710 Ⅎwnfc 2477 {copab 4623 × cxp 4771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-opab 4624 df-xp 4785 |
This theorem is referenced by: opeliunxp 4821 nfres 4937 fmpt2x 5731 |
Copyright terms: Public domain | W3C validator |