New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > resdmres | GIF version |
Description: Restriction to the domain of a restriction. (Contributed by set.mm contributors, 8-Apr-2007.) |
Ref | Expression |
---|---|
resdmres | ⊢ (A ↾ dom (A ↾ B)) = (A ↾ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in12 3467 | . . 3 ⊢ (A ∩ ((B × V) ∩ (dom A × V))) = ((B × V) ∩ (A ∩ (dom A × V))) | |
2 | df-res 4789 | . . . . 5 ⊢ (A ↾ dom A) = (A ∩ (dom A × V)) | |
3 | resdm 4999 | . . . . 5 ⊢ (A ↾ dom A) = A | |
4 | 2, 3 | eqtr3i 2375 | . . . 4 ⊢ (A ∩ (dom A × V)) = A |
5 | 4 | ineq2i 3455 | . . 3 ⊢ ((B × V) ∩ (A ∩ (dom A × V))) = ((B × V) ∩ A) |
6 | incom 3449 | . . 3 ⊢ ((B × V) ∩ A) = (A ∩ (B × V)) | |
7 | 1, 5, 6 | 3eqtri 2377 | . 2 ⊢ (A ∩ ((B × V) ∩ (dom A × V))) = (A ∩ (B × V)) |
8 | df-res 4789 | . . 3 ⊢ (A ↾ dom (A ↾ B)) = (A ∩ (dom (A ↾ B) × V)) | |
9 | dmres 4987 | . . . . . 6 ⊢ dom (A ↾ B) = (B ∩ dom A) | |
10 | 9 | xpeq1i 4805 | . . . . 5 ⊢ (dom (A ↾ B) × V) = ((B ∩ dom A) × V) |
11 | xpindir 4866 | . . . . 5 ⊢ ((B ∩ dom A) × V) = ((B × V) ∩ (dom A × V)) | |
12 | 10, 11 | eqtri 2373 | . . . 4 ⊢ (dom (A ↾ B) × V) = ((B × V) ∩ (dom A × V)) |
13 | 12 | ineq2i 3455 | . . 3 ⊢ (A ∩ (dom (A ↾ B) × V)) = (A ∩ ((B × V) ∩ (dom A × V))) |
14 | 8, 13 | eqtri 2373 | . 2 ⊢ (A ↾ dom (A ↾ B)) = (A ∩ ((B × V) ∩ (dom A × V))) |
15 | df-res 4789 | . 2 ⊢ (A ↾ B) = (A ∩ (B × V)) | |
16 | 7, 14, 15 | 3eqtr4i 2383 | 1 ⊢ (A ↾ dom (A ↾ B)) = (A ↾ B) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 Vcvv 2860 ∩ cin 3209 × cxp 4771 dom cdm 4773 ↾ cres 4775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-ima 4728 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 |
This theorem is referenced by: imadmres 5080 |
Copyright terms: Public domain | W3C validator |