NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  resdmres GIF version

Theorem resdmres 5079
Description: Restriction to the domain of a restriction. (Contributed by set.mm contributors, 8-Apr-2007.)
Assertion
Ref Expression
resdmres (A dom (A B)) = (A B)

Proof of Theorem resdmres
StepHypRef Expression
1 in12 3467 . . 3 (A ∩ ((B × V) ∩ (dom A × V))) = ((B × V) ∩ (A ∩ (dom A × V)))
2 df-res 4789 . . . . 5 (A dom A) = (A ∩ (dom A × V))
3 resdm 4999 . . . . 5 (A dom A) = A
42, 3eqtr3i 2375 . . . 4 (A ∩ (dom A × V)) = A
54ineq2i 3455 . . 3 ((B × V) ∩ (A ∩ (dom A × V))) = ((B × V) ∩ A)
6 incom 3449 . . 3 ((B × V) ∩ A) = (A ∩ (B × V))
71, 5, 63eqtri 2377 . 2 (A ∩ ((B × V) ∩ (dom A × V))) = (A ∩ (B × V))
8 df-res 4789 . . 3 (A dom (A B)) = (A ∩ (dom (A B) × V))
9 dmres 4987 . . . . . 6 dom (A B) = (B ∩ dom A)
109xpeq1i 4805 . . . . 5 (dom (A B) × V) = ((B ∩ dom A) × V)
11 xpindir 4866 . . . . 5 ((B ∩ dom A) × V) = ((B × V) ∩ (dom A × V))
1210, 11eqtri 2373 . . . 4 (dom (A B) × V) = ((B × V) ∩ (dom A × V))
1312ineq2i 3455 . . 3 (A ∩ (dom (A B) × V)) = (A ∩ ((B × V) ∩ (dom A × V)))
148, 13eqtri 2373 . 2 (A dom (A B)) = (A ∩ ((B × V) ∩ (dom A × V)))
15 df-res 4789 . 2 (A B) = (A ∩ (B × V))
167, 14, 153eqtr4i 2383 1 (A dom (A B)) = (A B)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  Vcvv 2860  cin 3209   × cxp 4771  dom cdm 4773   cres 4775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-ima 4728  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789
This theorem is referenced by:  imadmres  5080
  Copyright terms: Public domain W3C validator