Proof of Theorem 1oaii
Step | Hyp | Ref
| Expression |
1 | | orabs 120 |
. . . . 5
((a →2 b) ∪ ((a
→2 b) ∩ ((b ∪ c)
→1 ((a →2
b) ∩ (a →2 c))))) = (a
→2 b) |
2 | | 1oaiii 823 |
. . . . . 6
((a →2 b) ∩ ((b
∪ c) →1 ((a →2 b) ∩ (a
→2 c)))) = ((a →2 c) ∩ ((b
∪ c) →1 ((a →2 b) ∩ (a
→2 c)))) |
3 | 2 | lor 70 |
. . . . 5
((a →2 b) ∪ ((a
→2 b) ∩ ((b ∪ c)
→1 ((a →2
b) ∩ (a →2 c))))) = ((a
→2 b) ∪ ((a →2 c) ∩ ((b
∪ c) →1 ((a →2 b) ∩ (a
→2 c))))) |
4 | | df-i2 45 |
. . . . . 6
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
5 | | ancom 74 |
. . . . . . 7
(a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
6 | 5 | lor 70 |
. . . . . 6
(b ∪ (a⊥ ∩ b⊥ )) = (b ∪ (b⊥ ∩ a⊥ )) |
7 | 4, 6 | ax-r2 36 |
. . . . 5
(a →2 b) = (b ∪
(b⊥ ∩ a⊥ )) |
8 | 1, 3, 7 | 3tr2 64 |
. . . 4
((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)
→1 ((a →2
b) ∩ (a →2 c))))) = (b
∪ (b⊥ ∩ a⊥ )) |
9 | 8 | lan 77 |
. . 3
(b⊥ ∩
((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)
→1 ((a →2
b) ∩ (a →2 c)))))) = (b⊥ ∩ (b ∪ (b⊥ ∩ a⊥ ))) |
10 | | omlan 448 |
. . 3
(b⊥ ∩ (b ∪ (b⊥ ∩ a⊥ ))) = (b⊥ ∩ a⊥ ) |
11 | 9, 10 | ax-r2 36 |
. 2
(b⊥ ∩
((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)
→1 ((a →2
b) ∩ (a →2 c)))))) = (b⊥ ∩ a⊥ ) |
12 | | lear 161 |
. 2
(b⊥ ∩ a⊥ ) ≤ a⊥ |
13 | 11, 12 | bltr 138 |
1
(b⊥ ∩
((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)
→1 ((a →2
b) ∩ (a →2 c)))))) ≤ a⊥ |