Proof of Theorem 2oalem1
| Step | Hyp | Ref
| Expression |
| 1 | | or12 80 |
. 2
((a →2 b)⊥ ∪ ((b ∪ c) ∪
((a →2 b) ∩ (a
→2 c)))) = ((b ∪ c) ∪
((a →2 b)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))) |
| 2 | | ud2lem0c 278 |
. . . 4
(a →2 b)⊥ = (b⊥ ∩ (a ∪ b)) |
| 3 | | df-i2 45 |
. . . . 5
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
| 4 | | df-i2 45 |
. . . . 5
(a →2 c) = (c ∪
(a⊥ ∩ c⊥ )) |
| 5 | 3, 4 | 2an 79 |
. . . 4
((a →2 b) ∩ (a
→2 c)) = ((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ ))) |
| 6 | 2, 5 | 2or 72 |
. . 3
((a →2 b)⊥ ∪ ((a →2 b) ∩ (a
→2 c))) = ((b⊥ ∩ (a ∪ b))
∪ ((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ )))) |
| 7 | 6 | lor 70 |
. 2
((b ∪ c) ∪ ((a
→2 b)⊥
∪ ((a →2 b) ∩ (a
→2 c)))) = ((b ∪ c) ∪
((b⊥ ∩ (a ∪ b))
∪ ((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ ))))) |
| 8 | | or32 82 |
. . . . 5
((b ∪ c) ∪ (b⊥ ∩ (a ∪ b))) =
((b ∪ (b⊥ ∩ (a ∪ b)))
∪ c) |
| 9 | | oml 445 |
. . . . . . 7
(b ∪ (b⊥ ∩ (b ∪ a))) =
(b ∪ a) |
| 10 | | ax-a2 31 |
. . . . . . . . 9
(a ∪ b) = (b ∪
a) |
| 11 | 10 | lan 77 |
. . . . . . . 8
(b⊥ ∩ (a ∪ b)) =
(b⊥ ∩ (b ∪ a)) |
| 12 | 11 | lor 70 |
. . . . . . 7
(b ∪ (b⊥ ∩ (a ∪ b))) =
(b ∪ (b⊥ ∩ (b ∪ a))) |
| 13 | 9, 12, 10 | 3tr1 63 |
. . . . . 6
(b ∪ (b⊥ ∩ (a ∪ b))) =
(a ∪ b) |
| 14 | 13 | ax-r5 38 |
. . . . 5
((b ∪ (b⊥ ∩ (a ∪ b)))
∪ c) = ((a ∪ b) ∪
c) |
| 15 | 8, 14 | ax-r2 36 |
. . . 4
((b ∪ c) ∪ (b⊥ ∩ (a ∪ b))) =
((a ∪ b) ∪ c) |
| 16 | 15 | ax-r5 38 |
. . 3
(((b ∪ c) ∪ (b⊥ ∩ (a ∪ b)))
∪ ((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ )))) = (((a ∪ b) ∪
c) ∪ ((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ )))) |
| 17 | | ax-a3 32 |
. . 3
(((b ∪ c) ∪ (b⊥ ∩ (a ∪ b)))
∪ ((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ )))) = ((b ∪ c) ∪
((b⊥ ∩ (a ∪ b))
∪ ((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ ))))) |
| 18 | | oran 87 |
. . . . . . . . . . . . 13
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
| 19 | 18 | lan 77 |
. . . . . . . . . . . 12
(b⊥ ∩ (a ∪ b)) =
(b⊥ ∩ (a⊥ ∩ b⊥ )⊥
) |
| 20 | | anor3 90 |
. . . . . . . . . . . 12
(b⊥ ∩ (a⊥ ∩ b⊥ )⊥ ) =
(b ∪ (a⊥ ∩ b⊥
))⊥ |
| 21 | 19, 20 | ax-r2 36 |
. . . . . . . . . . 11
(b⊥ ∩ (a ∪ b)) =
(b ∪ (a⊥ ∩ b⊥
))⊥ |
| 22 | 21 | ax-r1 35 |
. . . . . . . . . 10
(b ∪ (a⊥ ∩ b⊥ ))⊥ = (b⊥ ∩ (a ∪ b)) |
| 23 | | lear 161 |
. . . . . . . . . 10
(b⊥ ∩ (a ∪ b)) ≤
(a ∪ b) |
| 24 | 22, 23 | bltr 138 |
. . . . . . . . 9
(b ∪ (a⊥ ∩ b⊥ ))⊥ ≤
(a ∪ b) |
| 25 | | leo 158 |
. . . . . . . . 9
(a ∪ b) ≤ ((a
∪ b) ∪ c) |
| 26 | 24, 25 | letr 137 |
. . . . . . . 8
(b ∪ (a⊥ ∩ b⊥ ))⊥ ≤
((a ∪ b) ∪ c) |
| 27 | 26 | lecom 180 |
. . . . . . 7
(b ∪ (a⊥ ∩ b⊥ ))⊥ C
((a ∪ b) ∪ c) |
| 28 | 27 | comcom6 459 |
. . . . . 6
(b ∪ (a⊥ ∩ b⊥ )) C ((a ∪ b) ∪
c) |
| 29 | 28 | comcom 453 |
. . . . 5
((a ∪ b) ∪ c) C
(b ∪ (a⊥ ∩ b⊥ )) |
| 30 | | lear 161 |
. . . . . . . . . 10
(c⊥ ∩ (a ∪ c)) ≤
(a ∪ c) |
| 31 | | leo 158 |
. . . . . . . . . 10
(a ∪ c) ≤ ((a
∪ c) ∪ b) |
| 32 | 30, 31 | letr 137 |
. . . . . . . . 9
(c⊥ ∩ (a ∪ c)) ≤
((a ∪ c) ∪ b) |
| 33 | | oran 87 |
. . . . . . . . . . 11
(a ∪ c) = (a⊥ ∩ c⊥
)⊥ |
| 34 | 33 | lan 77 |
. . . . . . . . . 10
(c⊥ ∩ (a ∪ c)) =
(c⊥ ∩ (a⊥ ∩ c⊥ )⊥
) |
| 35 | | anor3 90 |
. . . . . . . . . 10
(c⊥ ∩ (a⊥ ∩ c⊥ )⊥ ) =
(c ∪ (a⊥ ∩ c⊥
))⊥ |
| 36 | 34, 35 | ax-r2 36 |
. . . . . . . . 9
(c⊥ ∩ (a ∪ c)) =
(c ∪ (a⊥ ∩ c⊥
))⊥ |
| 37 | | or32 82 |
. . . . . . . . 9
((a ∪ c) ∪ b) =
((a ∪ b) ∪ c) |
| 38 | 32, 36, 37 | le3tr2 141 |
. . . . . . . 8
(c ∪ (a⊥ ∩ c⊥ ))⊥ ≤
((a ∪ b) ∪ c) |
| 39 | 38 | lecom 180 |
. . . . . . 7
(c ∪ (a⊥ ∩ c⊥ ))⊥ C
((a ∪ b) ∪ c) |
| 40 | 39 | comcom6 459 |
. . . . . 6
(c ∪ (a⊥ ∩ c⊥ )) C ((a ∪ b) ∪
c) |
| 41 | 40 | comcom 453 |
. . . . 5
((a ∪ b) ∪ c) C
(c ∪ (a⊥ ∩ c⊥ )) |
| 42 | 29, 41 | fh3 471 |
. . . 4
(((a ∪ b) ∪ c)
∪ ((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ )))) = ((((a ∪ b) ∪
c) ∪ (b ∪ (a⊥ ∩ b⊥ ))) ∩ (((a ∪ b) ∪
c) ∪ (c ∪ (a⊥ ∩ c⊥ )))) |
| 43 | | or12 80 |
. . . . . 6
(((a ∪ b) ∪ c)
∪ (b ∪ (a⊥ ∩ b⊥ ))) = (b ∪ (((a
∪ b) ∪ c) ∪ (a⊥ ∩ b⊥ ))) |
| 44 | | or32 82 |
. . . . . . . 8
(((a ∪ b) ∪ c)
∪ (a⊥ ∩ b⊥ )) = (((a ∪ b) ∪
(a⊥ ∩ b⊥ )) ∪ c) |
| 45 | | ax-a2 31 |
. . . . . . . 8
(((a ∪ b) ∪ (a⊥ ∩ b⊥ )) ∪ c) = (c ∪
((a ∪ b) ∪ (a⊥ ∩ b⊥ ))) |
| 46 | | anor3 90 |
. . . . . . . . . . . 12
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
| 47 | 46 | lor 70 |
. . . . . . . . . . 11
((a ∪ b) ∪ (a⊥ ∩ b⊥ )) = ((a ∪ b) ∪
(a ∪ b)⊥ ) |
| 48 | | df-t 41 |
. . . . . . . . . . . 12
1 = ((a ∪ b) ∪ (a
∪ b)⊥
) |
| 49 | 48 | ax-r1 35 |
. . . . . . . . . . 11
((a ∪ b) ∪ (a
∪ b)⊥ ) =
1 |
| 50 | 47, 49 | ax-r2 36 |
. . . . . . . . . 10
((a ∪ b) ∪ (a⊥ ∩ b⊥ )) = 1 |
| 51 | 50 | lor 70 |
. . . . . . . . 9
(c ∪ ((a ∪ b) ∪
(a⊥ ∩ b⊥ ))) = (c ∪ 1) |
| 52 | | or1 104 |
. . . . . . . . 9
(c ∪ 1) = 1 |
| 53 | 51, 52 | ax-r2 36 |
. . . . . . . 8
(c ∪ ((a ∪ b) ∪
(a⊥ ∩ b⊥ ))) = 1 |
| 54 | 44, 45, 53 | 3tr 65 |
. . . . . . 7
(((a ∪ b) ∪ c)
∪ (a⊥ ∩ b⊥ )) = 1 |
| 55 | 54 | lor 70 |
. . . . . 6
(b ∪ (((a ∪ b) ∪
c) ∪ (a⊥ ∩ b⊥ ))) = (b ∪ 1) |
| 56 | | or1 104 |
. . . . . 6
(b ∪ 1) = 1 |
| 57 | 43, 55, 56 | 3tr 65 |
. . . . 5
(((a ∪ b) ∪ c)
∪ (b ∪ (a⊥ ∩ b⊥ ))) = 1 |
| 58 | | or12 80 |
. . . . . 6
(((a ∪ b) ∪ c)
∪ (c ∪ (a⊥ ∩ c⊥ ))) = (c ∪ (((a
∪ b) ∪ c) ∪ (a⊥ ∩ c⊥ ))) |
| 59 | | or32 82 |
. . . . . . . . . 10
((a ∪ b) ∪ c) =
((a ∪ c) ∪ b) |
| 60 | | ax-a2 31 |
. . . . . . . . . 10
((a ∪ c) ∪ b) =
(b ∪ (a ∪ c)) |
| 61 | 59, 60 | ax-r2 36 |
. . . . . . . . 9
((a ∪ b) ∪ c) =
(b ∪ (a ∪ c)) |
| 62 | 61 | ax-r5 38 |
. . . . . . . 8
(((a ∪ b) ∪ c)
∪ (a⊥ ∩ c⊥ )) = ((b ∪ (a ∪
c)) ∪ (a⊥ ∩ c⊥ )) |
| 63 | | ax-a3 32 |
. . . . . . . 8
((b ∪ (a ∪ c))
∪ (a⊥ ∩ c⊥ )) = (b ∪ ((a
∪ c) ∪ (a⊥ ∩ c⊥ ))) |
| 64 | | anor3 90 |
. . . . . . . . . . . 12
(a⊥ ∩ c⊥ ) = (a ∪ c)⊥ |
| 65 | 64 | lor 70 |
. . . . . . . . . . 11
((a ∪ c) ∪ (a⊥ ∩ c⊥ )) = ((a ∪ c) ∪
(a ∪ c)⊥ ) |
| 66 | | df-t 41 |
. . . . . . . . . . . 12
1 = ((a ∪ c) ∪ (a
∪ c)⊥
) |
| 67 | 66 | ax-r1 35 |
. . . . . . . . . . 11
((a ∪ c) ∪ (a
∪ c)⊥ ) =
1 |
| 68 | 65, 67 | ax-r2 36 |
. . . . . . . . . 10
((a ∪ c) ∪ (a⊥ ∩ c⊥ )) = 1 |
| 69 | 68 | lor 70 |
. . . . . . . . 9
(b ∪ ((a ∪ c) ∪
(a⊥ ∩ c⊥ ))) = (b ∪ 1) |
| 70 | 69, 56 | ax-r2 36 |
. . . . . . . 8
(b ∪ ((a ∪ c) ∪
(a⊥ ∩ c⊥ ))) = 1 |
| 71 | 62, 63, 70 | 3tr 65 |
. . . . . . 7
(((a ∪ b) ∪ c)
∪ (a⊥ ∩ c⊥ )) = 1 |
| 72 | 71 | lor 70 |
. . . . . 6
(c ∪ (((a ∪ b) ∪
c) ∪ (a⊥ ∩ c⊥ ))) = (c ∪ 1) |
| 73 | 58, 72, 52 | 3tr 65 |
. . . . 5
(((a ∪ b) ∪ c)
∪ (c ∪ (a⊥ ∩ c⊥ ))) = 1 |
| 74 | 57, 73 | 2an 79 |
. . . 4
((((a ∪ b) ∪ c)
∪ (b ∪ (a⊥ ∩ b⊥ ))) ∩ (((a ∪ b) ∪
c) ∪ (c ∪ (a⊥ ∩ c⊥ )))) = (1 ∩
1) |
| 75 | | anidm 111 |
. . . 4
(1 ∩ 1) = 1 |
| 76 | 42, 74, 75 | 3tr 65 |
. . 3
(((a ∪ b) ∪ c)
∪ ((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ )))) = 1 |
| 77 | 16, 17, 76 | 3tr2 64 |
. 2
((b ∪ c) ∪ ((b⊥ ∩ (a ∪ b))
∪ ((b ∪ (a⊥ ∩ b⊥ )) ∩ (c ∪ (a⊥ ∩ c⊥ ))))) = 1 |
| 78 | 1, 7, 77 | 3tr 65 |
1
((a →2 b)⊥ ∪ ((b ∪ c) ∪
((a →2 b) ∩ (a
→2 c)))) =
1 |