Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wran | GIF version |
Description: Weak orthomodular law. (Contributed by NM, 24-Sep-1997.) |
Ref | Expression |
---|---|
wran.1 | (a ≡ b) = 1 |
Ref | Expression |
---|---|
wran | ((a ∩ c) ≡ (b ∩ c)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-a 40 | . . 3 (a ∩ c) = (a⊥ ∪ c⊥ )⊥ | |
2 | df-a 40 | . . 3 (b ∩ c) = (b⊥ ∪ c⊥ )⊥ | |
3 | 1, 2 | 2bi 99 | . 2 ((a ∩ c) ≡ (b ∩ c)) = ((a⊥ ∪ c⊥ )⊥ ≡ (b⊥ ∪ c⊥ )⊥ ) |
4 | wran.1 | . . . . 5 (a ≡ b) = 1 | |
5 | 4 | wr4 199 | . . . 4 (a⊥ ≡ b⊥ ) = 1 |
6 | 5 | wr5-2v 366 | . . 3 ((a⊥ ∪ c⊥ ) ≡ (b⊥ ∪ c⊥ )) = 1 |
7 | 6 | wr4 199 | . 2 ((a⊥ ∪ c⊥ )⊥ ≡ (b⊥ ∪ c⊥ )⊥ ) = 1 |
8 | 3, 7 | ax-r2 36 | 1 ((a ∩ c) ≡ (b ∩ c)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ≡ tb 5 ∪ wo 6 ∩ wa 7 1wt 8 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 |
This theorem is referenced by: wlan 370 wr2 371 w2an 373 wcomlem 382 wlel 392 wleran 394 wbctr 410 wcom3i 422 wfh2 424 |
Copyright terms: Public domain | W3C validator |