Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wlan | GIF version |
Description: Weak orthomodular law. (Contributed by NM, 24-Sep-1997.) |
Ref | Expression |
---|---|
wlan.1 | (a ≡ b) = 1 |
Ref | Expression |
---|---|
wlan | ((c ∩ a) ≡ (c ∩ b)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 74 | . . 3 (c ∩ a) = (a ∩ c) | |
2 | ancom 74 | . . 3 (c ∩ b) = (b ∩ c) | |
3 | 1, 2 | 2bi 99 | . 2 ((c ∩ a) ≡ (c ∩ b)) = ((a ∩ c) ≡ (b ∩ c)) |
4 | wlan.1 | . . 3 (a ≡ b) = 1 | |
5 | 4 | wran 369 | . 2 ((a ∩ c) ≡ (b ∩ c)) = 1 |
6 | 3, 5 | ax-r2 36 | 1 ((c ∩ a) ≡ (c ∩ b)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ≡ tb 5 ∩ wa 7 1wt 8 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 |
This theorem is referenced by: w2an 373 wleoa 376 wom4 380 wcomlem 382 wletr 396 wlbtr 398 wcbtr 411 wcomcom2 415 wcom3ii 419 wfh1 423 wfh2 424 wlem14 430 wdid0id1 1112 wdid0id3 1114 wdid0id4 1115 |
Copyright terms: Public domain | W3C validator |