Proof of Theorem test2
Step | Hyp | Ref
| Expression |
1 | | dfnb 95 |
. . . . 5
(a ≡ b)⊥ = ((a ∪ b) ∩
(a⊥ ∪ b⊥ )) |
2 | | anidm 111 |
. . . . 5
((a ∩ b) ∩ (a
∩ b)) = (a ∩ b) |
3 | 1, 2 | 2or 72 |
. . . 4
((a ≡ b)⊥ ∪ ((a ∩ b) ∩
(a ∩ b))) = (((a
∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ (a ∩ b)) |
4 | | comor1 461 |
. . . . . . 7
(a ∪ b) C a |
5 | | comor2 462 |
. . . . . . 7
(a ∪ b) C b |
6 | 4, 5 | com2an 484 |
. . . . . 6
(a ∪ b) C (a
∩ b) |
7 | 4 | comcom2 183 |
. . . . . . 7
(a ∪ b) C a⊥ |
8 | 5 | comcom2 183 |
. . . . . . 7
(a ∪ b) C b⊥ |
9 | 7, 8 | com2or 483 |
. . . . . 6
(a ∪ b) C (a⊥ ∪ b⊥ ) |
10 | 6, 9 | fh4r 476 |
. . . . 5
(((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ (a ∩ b)) =
(((a ∪ b) ∪ (a
∩ b)) ∩ ((a⊥ ∪ b⊥ ) ∪ (a ∩ b))) |
11 | | ax-a2 31 |
. . . . . . . 8
((a ∪ b) ∪ (a
∩ b)) = ((a ∩ b) ∪
(a ∪ b)) |
12 | | lea 160 |
. . . . . . . . . 10
(a ∩ b) ≤ a |
13 | | leo 158 |
. . . . . . . . . 10
a ≤ (a ∪ b) |
14 | 12, 13 | letr 137 |
. . . . . . . . 9
(a ∩ b) ≤ (a ∪
b) |
15 | 14 | df-le2 131 |
. . . . . . . 8
((a ∩ b) ∪ (a
∪ b)) = (a ∪ b) |
16 | 11, 15 | ax-r2 36 |
. . . . . . 7
((a ∪ b) ∪ (a
∩ b)) = (a ∪ b) |
17 | | df-a 40 |
. . . . . . . . 9
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
18 | 17 | lor 70 |
. . . . . . . 8
((a⊥ ∪ b⊥ ) ∪ (a ∩ b)) =
((a⊥ ∪ b⊥ ) ∪ (a⊥ ∪ b⊥ )⊥
) |
19 | | df-t 41 |
. . . . . . . . 9
1 = ((a⊥ ∪
b⊥ ) ∪ (a⊥ ∪ b⊥ )⊥
) |
20 | 19 | ax-r1 35 |
. . . . . . . 8
((a⊥ ∪ b⊥ ) ∪ (a⊥ ∪ b⊥ )⊥ ) =
1 |
21 | 18, 20 | ax-r2 36 |
. . . . . . 7
((a⊥ ∪ b⊥ ) ∪ (a ∩ b)) =
1 |
22 | 16, 21 | 2an 79 |
. . . . . 6
(((a ∪ b) ∪ (a
∩ b)) ∩ ((a⊥ ∪ b⊥ ) ∪ (a ∩ b))) =
((a ∪ b) ∩ 1) |
23 | | an1 106 |
. . . . . 6
((a ∪ b) ∩ 1) = (a
∪ b) |
24 | 22, 23 | ax-r2 36 |
. . . . 5
(((a ∪ b) ∪ (a
∩ b)) ∩ ((a⊥ ∪ b⊥ ) ∪ (a ∩ b))) =
(a ∪ b) |
25 | 10, 24 | ax-r2 36 |
. . . 4
(((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ (a ∩ b)) =
(a ∪ b) |
26 | 3, 25 | ax-r2 36 |
. . 3
((a ≡ b)⊥ ∪ ((a ∩ b) ∩
(a ∩ b))) = (a ∪
b) |
27 | 26 | ax-r1 35 |
. 2
(a ∪ b) = ((a ≡
b)⊥ ∪ ((a ∩ b) ∩
(a ∩ b))) |
28 | | leor 159 |
. . . 4
(a ∩ b) ≤ (c ∪
(a ∩ b)) |
29 | | leor 159 |
. . . 4
(a ∩ b) ≤ (c⊥ ∪ (a ∩ b)) |
30 | 28, 29 | le2an 169 |
. . 3
((a ∩ b) ∩ (a
∩ b)) ≤ ((c ∪ (a ∩
b)) ∩ (c⊥ ∪ (a ∩ b))) |
31 | 30 | lelor 166 |
. 2
((a ≡ b)⊥ ∪ ((a ∩ b) ∩
(a ∩ b))) ≤ ((a
≡ b)⊥ ∪
((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b)))) |
32 | 27, 31 | bltr 138 |
1
(a ∪ b) ≤ ((a
≡ b)⊥ ∪
((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b)))) |