Proof of Theorem fh1
| Step | Hyp | Ref
| Expression |
| 1 | | ledi 174 |
. . 3
((a ∩ b) ∪ (a
∩ c)) ≤ (a ∩ (b ∪
c)) |
| 2 | | ancom 74 |
. . . . . 6
(a ∩ (b ∪ c)) =
((b ∪ c) ∩ a) |
| 3 | | df-a 40 |
. . . . . . . . 9
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
| 4 | | df-a 40 |
. . . . . . . . 9
(a ∩ c) = (a⊥ ∪ c⊥
)⊥ |
| 5 | 3, 4 | 2or 72 |
. . . . . . . 8
((a ∩ b) ∪ (a
∩ c)) = ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ c⊥ )⊥
) |
| 6 | | df-a 40 |
. . . . . . . . . 10
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ )) = ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ c⊥ )⊥
)⊥ |
| 7 | 6 | ax-r1 35 |
. . . . . . . . 9
((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ c⊥ )⊥
)⊥ = ((a⊥
∪ b⊥ ) ∩ (a⊥ ∪ c⊥ )) |
| 8 | 7 | con3 68 |
. . . . . . . 8
((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ c⊥ )⊥ ) =
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥
))⊥ |
| 9 | 5, 8 | ax-r2 36 |
. . . . . . 7
((a ∩ b) ∪ (a
∩ c)) = ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥
))⊥ |
| 10 | 9 | con2 67 |
. . . . . 6
((a ∩ b) ∪ (a
∩ c))⊥ = ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ )) |
| 11 | 2, 10 | 2an 79 |
. . . . 5
((a ∩ (b ∪ c))
∩ ((a ∩ b) ∪ (a
∩ c))⊥ ) = (((b ∪ c) ∩
a) ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) |
| 12 | | anass 76 |
. . . . . . 7
(((b ∪ c) ∩ a)
∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) = ((b ∪ c) ∩
(a ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ )))) |
| 13 | | fh.1 |
. . . . . . . . . . . 12
a C b |
| 14 | 13 | comcom2 183 |
. . . . . . . . . . 11
a C b⊥ |
| 15 | 14 | com3ii 457 |
. . . . . . . . . 10
(a ∩ (a⊥ ∪ b⊥ )) = (a ∩ b⊥ ) |
| 16 | | fh.2 |
. . . . . . . . . . . 12
a C c |
| 17 | 16 | comcom2 183 |
. . . . . . . . . . 11
a C c⊥ |
| 18 | 17 | com3ii 457 |
. . . . . . . . . 10
(a ∩ (a⊥ ∪ c⊥ )) = (a ∩ c⊥ ) |
| 19 | 15, 18 | 2an 79 |
. . . . . . . . 9
((a ∩ (a⊥ ∪ b⊥ )) ∩ (a ∩ (a⊥ ∪ c⊥ ))) = ((a ∩ b⊥ ) ∩ (a ∩ c⊥ )) |
| 20 | | anandi 114 |
. . . . . . . . 9
(a ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) = ((a ∩ (a⊥ ∪ b⊥ )) ∩ (a ∩ (a⊥ ∪ c⊥ ))) |
| 21 | | anandi 114 |
. . . . . . . . 9
(a ∩ (b⊥ ∩ c⊥ )) = ((a ∩ b⊥ ) ∩ (a ∩ c⊥ )) |
| 22 | 19, 20, 21 | 3tr1 63 |
. . . . . . . 8
(a ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) = (a ∩ (b⊥ ∩ c⊥ )) |
| 23 | 22 | lan 77 |
. . . . . . 7
((b ∪ c) ∩ (a
∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ )))) = ((b ∪ c) ∩
(a ∩ (b⊥ ∩ c⊥ ))) |
| 24 | 12, 23 | ax-r2 36 |
. . . . . 6
(((b ∪ c) ∩ a)
∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) = ((b ∪ c) ∩
(a ∩ (b⊥ ∩ c⊥ ))) |
| 25 | | an12 81 |
. . . . . 6
((b ∪ c) ∩ (a
∩ (b⊥ ∩ c⊥ ))) = (a ∩ ((b
∪ c) ∩ (b⊥ ∩ c⊥ ))) |
| 26 | 24, 25 | ax-r2 36 |
. . . . 5
(((b ∪ c) ∩ a)
∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) = (a ∩ ((b
∪ c) ∩ (b⊥ ∩ c⊥ ))) |
| 27 | 11, 26 | ax-r2 36 |
. . . 4
((a ∩ (b ∪ c))
∩ ((a ∩ b) ∪ (a
∩ c))⊥ ) = (a ∩ ((b
∪ c) ∩ (b⊥ ∩ c⊥ ))) |
| 28 | | oran 87 |
. . . . . . . . . 10
(b ∪ c) = (b⊥ ∩ c⊥
)⊥ |
| 29 | 28 | ax-r1 35 |
. . . . . . . . 9
(b⊥ ∩ c⊥ )⊥ = (b ∪ c) |
| 30 | 29 | con3 68 |
. . . . . . . 8
(b⊥ ∩ c⊥ ) = (b ∪ c)⊥ |
| 31 | 30 | lan 77 |
. . . . . . 7
((b ∪ c) ∩ (b⊥ ∩ c⊥ )) = ((b ∪ c) ∩
(b ∪ c)⊥ ) |
| 32 | | dff 101 |
. . . . . . . 8
0 = ((b ∪ c) ∩ (b
∪ c)⊥
) |
| 33 | 32 | ax-r1 35 |
. . . . . . 7
((b ∪ c) ∩ (b
∪ c)⊥ ) =
0 |
| 34 | 31, 33 | ax-r2 36 |
. . . . . 6
((b ∪ c) ∩ (b⊥ ∩ c⊥ )) = 0 |
| 35 | 34 | lan 77 |
. . . . 5
(a ∩ ((b ∪ c) ∩
(b⊥ ∩ c⊥ ))) = (a ∩ 0) |
| 36 | | an0 108 |
. . . . 5
(a ∩ 0) = 0 |
| 37 | 35, 36 | ax-r2 36 |
. . . 4
(a ∩ ((b ∪ c) ∩
(b⊥ ∩ c⊥ ))) = 0 |
| 38 | 27, 37 | ax-r2 36 |
. . 3
((a ∩ (b ∪ c))
∩ ((a ∩ b) ∪ (a
∩ c))⊥ ) =
0 |
| 39 | 1, 38 | oml3 452 |
. 2
((a ∩ b) ∪ (a
∩ c)) = (a ∩ (b ∪
c)) |
| 40 | 39 | ax-r1 35 |
1
(a ∩ (b ∪ c)) =
((a ∩ b) ∪ (a
∩ c)) |