Proof of Theorem fh2
Step | Hyp | Ref
| Expression |
1 | | ledi 174 |
. . 3
((b ∩ a) ∪ (b
∩ c)) ≤ (b ∩ (a ∪
c)) |
2 | | oran 87 |
. . . . . . . . . . 11
((b ∩ a) ∪ (b
∩ c)) = ((b ∩ a)⊥ ∩ (b ∩ c)⊥
)⊥ |
3 | | df-a 40 |
. . . . . . . . . . . . . 14
(b ∩ a) = (b⊥ ∪ a⊥
)⊥ |
4 | 3 | con2 67 |
. . . . . . . . . . . . 13
(b ∩ a)⊥ = (b⊥ ∪ a⊥ ) |
5 | 4 | ran 78 |
. . . . . . . . . . . 12
((b ∩ a)⊥ ∩ (b ∩ c)⊥ ) = ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ ) |
6 | 5 | ax-r4 37 |
. . . . . . . . . . 11
((b ∩ a)⊥ ∩ (b ∩ c)⊥ )⊥ =
((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥
)⊥ |
7 | 2, 6 | ax-r2 36 |
. . . . . . . . . 10
((b ∩ a) ∪ (b
∩ c)) = ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥
)⊥ |
8 | 7 | con2 67 |
. . . . . . . . 9
((b ∩ a) ∪ (b
∩ c))⊥ = ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ ) |
9 | 8 | lan 77 |
. . . . . . . 8
((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) = ((b ∩ (a ∪
c)) ∩ ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ )) |
10 | | an4 86 |
. . . . . . . . 9
((b ∩ (a ∪ c))
∩ ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ )) = ((b ∩ (b⊥ ∪ a⊥ )) ∩ ((a ∪ c) ∩
(b ∩ c)⊥ )) |
11 | | fh.1 |
. . . . . . . . . . . . . 14
a C b |
12 | 11 | comcom 453 |
. . . . . . . . . . . . 13
b C a |
13 | 12 | comcom2 183 |
. . . . . . . . . . . 12
b C a⊥ |
14 | 13 | com3ii 457 |
. . . . . . . . . . 11
(b ∩ (b⊥ ∪ a⊥ )) = (b ∩ a⊥ ) |
15 | | ancom 74 |
. . . . . . . . . . 11
(b ∩ a⊥ ) = (a⊥ ∩ b) |
16 | 14, 15 | ax-r2 36 |
. . . . . . . . . 10
(b ∩ (b⊥ ∪ a⊥ )) = (a⊥ ∩ b) |
17 | 16 | ran 78 |
. . . . . . . . 9
((b ∩ (b⊥ ∪ a⊥ )) ∩ ((a ∪ c) ∩
(b ∩ c)⊥ )) = ((a⊥ ∩ b) ∩ ((a
∪ c) ∩ (b ∩ c)⊥ )) |
18 | 10, 17 | ax-r2 36 |
. . . . . . . 8
((b ∩ (a ∪ c))
∩ ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ )) = ((a⊥ ∩ b) ∩ ((a
∪ c) ∩ (b ∩ c)⊥ )) |
19 | 9, 18 | ax-r2 36 |
. . . . . . 7
((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) = ((a⊥ ∩ b) ∩ ((a
∪ c) ∩ (b ∩ c)⊥ )) |
20 | | an4 86 |
. . . . . . 7
((a⊥ ∩ b) ∩ ((a
∪ c) ∩ (b ∩ c)⊥ )) = ((a⊥ ∩ (a ∪ c))
∩ (b ∩ (b ∩ c)⊥ )) |
21 | 19, 20 | ax-r2 36 |
. . . . . 6
((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) = ((a⊥ ∩ (a ∪ c))
∩ (b ∩ (b ∩ c)⊥ )) |
22 | | ax-a1 30 |
. . . . . . . . . 10
a = a⊥
⊥ |
23 | 22 | ax-r5 38 |
. . . . . . . . 9
(a ∪ c) = (a⊥ ⊥ ∪
c) |
24 | 23 | lan 77 |
. . . . . . . 8
(a⊥ ∩ (a ∪ c)) =
(a⊥ ∩ (a⊥ ⊥ ∪
c)) |
25 | | fh.2 |
. . . . . . . . . 10
a C c |
26 | 25 | comcom3 454 |
. . . . . . . . 9
a⊥ C
c |
27 | 26 | com3ii 457 |
. . . . . . . 8
(a⊥ ∩ (a⊥ ⊥ ∪
c)) = (a⊥ ∩ c) |
28 | 24, 27 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩ (a ∪ c)) =
(a⊥ ∩ c) |
29 | 28 | ran 78 |
. . . . . 6
((a⊥ ∩
(a ∪ c)) ∩ (b
∩ (b ∩ c)⊥ )) = ((a⊥ ∩ c) ∩ (b
∩ (b ∩ c)⊥ )) |
30 | 21, 29 | ax-r2 36 |
. . . . 5
((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) = ((a⊥ ∩ c) ∩ (b
∩ (b ∩ c)⊥ )) |
31 | | anass 76 |
. . . . 5
((a⊥ ∩ c) ∩ (b
∩ (b ∩ c)⊥ )) = (a⊥ ∩ (c ∩ (b ∩
(b ∩ c)⊥ ))) |
32 | 30, 31 | ax-r2 36 |
. . . 4
((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) = (a⊥ ∩ (c ∩ (b ∩
(b ∩ c)⊥ ))) |
33 | | anass 76 |
. . . . . . . 8
((b ∩ c) ∩ (b
∩ c)⊥ ) = (b ∩ (c ∩
(b ∩ c)⊥ )) |
34 | 33 | ax-r1 35 |
. . . . . . 7
(b ∩ (c ∩ (b ∩
c)⊥ )) = ((b ∩ c) ∩
(b ∩ c)⊥ ) |
35 | | an12 81 |
. . . . . . 7
(c ∩ (b ∩ (b ∩
c)⊥ )) = (b ∩ (c ∩
(b ∩ c)⊥ )) |
36 | | dff 101 |
. . . . . . 7
0 = ((b ∩ c) ∩ (b
∩ c)⊥
) |
37 | 34, 35, 36 | 3tr1 63 |
. . . . . 6
(c ∩ (b ∩ (b ∩
c)⊥ )) =
0 |
38 | 37 | lan 77 |
. . . . 5
(a⊥ ∩ (c ∩ (b ∩
(b ∩ c)⊥ ))) = (a⊥ ∩ 0) |
39 | | an0 108 |
. . . . 5
(a⊥ ∩ 0) =
0 |
40 | 38, 39 | ax-r2 36 |
. . . 4
(a⊥ ∩ (c ∩ (b ∩
(b ∩ c)⊥ ))) = 0 |
41 | 32, 40 | ax-r2 36 |
. . 3
((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) =
0 |
42 | 1, 41 | oml3 452 |
. 2
((b ∩ a) ∪ (b
∩ c)) = (b ∩ (a ∪
c)) |
43 | 42 | ax-r1 35 |
1
(b ∩ (a ∪ c)) =
((b ∩ a) ∪ (b
∩ c)) |