Proof of Theorem xdp45lem
Step | Hyp | Ref
| Expression |
1 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . 18
(a0 ∪ a1) = (a1 ∪ a0) |
2 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . 18
(e ∪ b1) = (b1 ∪ e) |
3 | 1, 2 | 2an 79 |
. . . . . . . . . . . . . . . . 17
((a0 ∪ a1) ∩ (e ∪ b1)) = ((a1 ∪ a0) ∩ (b1 ∪ e)) |
4 | | ancom 74 |
. . . . . . . . . . . . . . . . 17
((a1 ∪ a0) ∩ (b1 ∪ e)) = ((b1 ∪ e) ∩ (a1 ∪ a0)) |
5 | 3, 4 | tr 62 |
. . . . . . . . . . . . . . . 16
((a0 ∪ a1) ∩ (e ∪ b1)) = ((b1 ∪ e) ∩ (a1 ∪ a0)) |
6 | | leor 159 |
. . . . . . . . . . . . . . . . . 18
b1 ≤ (a1 ∪ b1) |
7 | 6 | leror 152 |
. . . . . . . . . . . . . . . . 17
(b1 ∪ e) ≤ ((a1 ∪ b1) ∪ e) |
8 | | leo 158 |
. . . . . . . . . . . . . . . . 17
(a1 ∪ a0) ≤ ((a1 ∪ a0) ∪ e) |
9 | 7, 8 | le2an 169 |
. . . . . . . . . . . . . . . 16
((b1 ∪ e) ∩ (a1 ∪ a0)) ≤ (((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e)) |
10 | 5, 9 | bltr 138 |
. . . . . . . . . . . . . . 15
((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e)) |
11 | 10 | df2le2 136 |
. . . . . . . . . . . . . 14
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e))) = ((a0 ∪ a1) ∩ (e ∪ b1)) |
12 | 11 | cm 61 |
. . . . . . . . . . . . 13
((a0 ∪ a1) ∩ (e ∪ b1)) = (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e))) |
13 | | anass 76 |
. . . . . . . . . . . . . 14
((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ b1) ∪ e)) ∩ ((a1 ∪ a0) ∪ e)) = (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e))) |
14 | 13 | cm 61 |
. . . . . . . . . . . . 13
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e))) = ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ b1) ∪ e)) ∩ ((a1 ∪ a0) ∪ e)) |
15 | 12, 14 | tr 62 |
. . . . . . . . . . . 12
((a0 ∪ a1) ∩ (e ∪ b1)) = ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ b1) ∪ e)) ∩ ((a1 ∪ a0) ∪ e)) |
16 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . . . 21
(a1 ∪ a0) = (a0 ∪ a1) |
17 | 16 | ror 71 |
. . . . . . . . . . . . . . . . . . . 20
((a1 ∪ a0) ∪ e) = ((a0 ∪ a1) ∪ e) |
18 | | or32 82 |
. . . . . . . . . . . . . . . . . . . 20
((a0 ∪ a1) ∪ e) = ((a0 ∪ e) ∪ a1) |
19 | 17, 18 | tr 62 |
. . . . . . . . . . . . . . . . . . 19
((a1 ∪ a0) ∪ e) = ((a0 ∪ e) ∪ a1) |
20 | 19 | lan 77 |
. . . . . . . . . . . . . . . . . 18
(((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e)) = (((a1 ∪ b1) ∪ e) ∩ ((a0 ∪ e) ∪ a1)) |
21 | | ancom 74 |
. . . . . . . . . . . . . . . . . 18
(((a1 ∪ b1) ∪ e) ∩ ((a0 ∪ e) ∪ a1)) = (((a0 ∪ e) ∪ a1) ∩ ((a1 ∪ b1) ∪ e)) |
22 | 20, 21 | tr 62 |
. . . . . . . . . . . . . . . . 17
(((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e)) = (((a0 ∪ e) ∪ a1) ∩ ((a1 ∪ b1) ∪ e)) |
23 | | leor 159 |
. . . . . . . . . . . . . . . . . . 19
e ≤ (a0 ∪ e) |
24 | 23 | ler 149 |
. . . . . . . . . . . . . . . . . 18
e ≤ ((a0 ∪ e) ∪ a1) |
25 | 24 | mldual2i 1127 |
. . . . . . . . . . . . . . . . 17
(((a0 ∪ e) ∪ a1) ∩ ((a1 ∪ b1) ∪ e)) = ((((a0 ∪ e) ∪ a1) ∩ (a1 ∪ b1)) ∪ e) |
26 | | ancom 74 |
. . . . . . . . . . . . . . . . . . 19
(((a0 ∪ e) ∪ a1) ∩ (a1 ∪ b1)) = ((a1 ∪ b1) ∩ ((a0 ∪ e) ∪ a1)) |
27 | | leo 158 |
. . . . . . . . . . . . . . . . . . . 20
a1 ≤ (a1 ∪ b1) |
28 | 27 | mldual2i 1127 |
. . . . . . . . . . . . . . . . . . 19
((a1 ∪ b1) ∩ ((a0 ∪ e) ∪ a1)) = (((a1 ∪ b1) ∩ (a0 ∪ e)) ∪ a1) |
29 | 26, 28 | tr 62 |
. . . . . . . . . . . . . . . . . 18
(((a0 ∪ e) ∪ a1) ∩ (a1 ∪ b1)) = (((a1 ∪ b1) ∩ (a0 ∪ e)) ∪ a1) |
30 | 29 | ror 71 |
. . . . . . . . . . . . . . . . 17
((((a0 ∪ e) ∪ a1) ∩ (a1 ∪ b1)) ∪ e) = ((((a1 ∪ b1) ∩ (a0 ∪ e)) ∪ a1) ∪ e) |
31 | 22, 25, 30 | 3tr 65 |
. . . . . . . . . . . . . . . 16
(((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e)) = ((((a1 ∪ b1) ∩ (a0 ∪ e)) ∪ a1) ∪ e) |
32 | | orass 75 |
. . . . . . . . . . . . . . . 16
((((a1 ∪ b1) ∩ (a0 ∪ e)) ∪ a1) ∪ e) = (((a1 ∪ b1) ∩ (a0 ∪ e)) ∪ (a1 ∪ e)) |
33 | | orcom 73 |
. . . . . . . . . . . . . . . 16
(((a1 ∪ b1) ∩ (a0 ∪ e)) ∪ (a1 ∪ e)) = ((a1 ∪ e) ∪ ((a1 ∪ b1) ∩ (a0 ∪ e))) |
34 | 31, 32, 33 | 3tr 65 |
. . . . . . . . . . . . . . 15
(((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e)) = ((a1 ∪ e) ∪ ((a1 ∪ b1) ∩ (a0 ∪ e))) |
35 | | leo 158 |
. . . . . . . . . . . . . . . 16
(a1 ∪ e) ≤ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))))) |
36 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . 22
((a0 ∪ e) ∩ (a1 ∪ b1)) = ((a1 ∪ b1) ∩ (a0 ∪ e)) |
37 | 36 | cm 61 |
. . . . . . . . . . . . . . . . . . . . 21
((a1 ∪ b1) ∩ (a0 ∪ e)) = ((a0 ∪ e) ∩ (a1 ∪ b1)) |
38 | | xxdp.e |
. . . . . . . . . . . . . . . . . . . . . . . . 25
e = (b0 ∩ (a0 ∪ p0)) |
39 | | xxdp.p0 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
40 | 39 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(a0 ∪ p0) = (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
41 | 40 | lan 77 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
(b0 ∩ (a0 ∪ p0)) = (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
42 | 38, 41 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . 24
e = (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
43 | 42 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . 23
(a0 ∪ e) = (a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) |
44 | 43 | ran 78 |
. . . . . . . . . . . . . . . . . . . . . 22
((a0 ∪ e) ∩ (a1 ∪ b1)) = ((a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) |
45 | | le1 146 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
b0 ≤
1 |
46 | 45 | leran 153 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
(b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) ≤ (1 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
47 | 46 | lelor 166 |
. . . . . . . . . . . . . . . . . . . . . . . 24
(a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ≤ (a0 ∪ (1 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) |
48 | 47 | leran 153 |
. . . . . . . . . . . . . . . . . . . . . . 23
((a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) ≤ ((a0 ∪ (1 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) |
49 | | an1r 107 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
(1 ∩ (a0 ∪
((a1 ∪ b1) ∩ (a2 ∪ b2)))) = (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
50 | 49 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) = (a0 ∪ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
51 | | orass 75 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
((a0 ∪ a0) ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) = (a0 ∪ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
52 | 51 | cm 61 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(a0 ∪ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) = ((a0 ∪ a0) ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
53 | | oridm 110 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
(a0 ∪ a0) = a0 |
54 | 53 | ror 71 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
((a0 ∪ a0) ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) = (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
55 | | orcom 73 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) = (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ a0) |
56 | 54, 55 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
((a0 ∪ a0) ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) = (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ a0) |
57 | 50, 52, 56 | 3tr 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) = (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ a0) |
58 | 57 | ran 78 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) = ((((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ a0) ∩ (a1 ∪ b1)) |
59 | | lea 160 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
((a1 ∪ b1) ∩ (a2 ∪ b2)) ≤ (a1 ∪ b1) |
60 | 59 | mlduali 1128 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ a0) ∩ (a1 ∪ b1)) = (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ (a0 ∩ (a1 ∪ b1))) |
61 | 58, 60 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
((a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) = (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ (a0 ∩ (a1 ∪ b1))) |
62 | | lear 161 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((a1 ∪ b1) ∩ (a2 ∪ b2)) ≤ (a2 ∪ b2) |
63 | 62 | leror 152 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
(((a1 ∪ b1) ∩ (a2 ∪ b2)) ∪ (a0 ∩ (a1 ∪ b1))) ≤ ((a2 ∪ b2) ∪ (a0 ∩ (a1 ∪ b1))) |
64 | 61, 63 | bltr 138 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) ≤ ((a2 ∪ b2) ∪ (a0 ∩ (a1 ∪ b1))) |
65 | | or32 82 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
((a2 ∪ b2) ∪ (a0 ∩ (a1 ∪ b1))) = ((a2 ∪ (a0 ∩ (a1 ∪ b1))) ∪ b2) |
66 | | xxdp.d |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
d = (a2 ∪ (a0 ∩ (a1 ∪ b1))) |
67 | 66 | ror 71 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(d ∪ b2) = ((a2 ∪ (a0 ∩ (a1 ∪ b1))) ∪ b2) |
68 | 67 | cm 61 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
((a2 ∪ (a0 ∩ (a1 ∪ b1))) ∪ b2) = (d ∪ b2) |
69 | 65, 68 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((a2 ∪ b2) ∪ (a0 ∩ (a1 ∪ b1))) = (d ∪ b2) |
70 | 64, 69 | lbtr 139 |
. . . . . . . . . . . . . . . . . . . . . . 23
((a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) ≤ (d ∪ b2) |
71 | 48, 70 | letr 137 |
. . . . . . . . . . . . . . . . . . . . . 22
((a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))))) ∩ (a1 ∪ b1)) ≤ (d ∪ b2) |
72 | 44, 71 | bltr 138 |
. . . . . . . . . . . . . . . . . . . . 21
((a0 ∪ e) ∩ (a1 ∪ b1)) ≤ (d ∪ b2) |
73 | 37, 72 | bltr 138 |
. . . . . . . . . . . . . . . . . . . 20
((a1 ∪ b1) ∩ (a0 ∪ e)) ≤ (d
∪ b2) |
74 | 73 | df2le2 136 |
. . . . . . . . . . . . . . . . . . 19
(((a1 ∪ b1) ∩ (a0 ∪ e)) ∩ (d
∪ b2)) = ((a1 ∪ b1) ∩ (a0 ∪ e)) |
75 | 74 | cm 61 |
. . . . . . . . . . . . . . . . . 18
((a1 ∪ b1) ∩ (a0 ∪ e)) = (((a1 ∪ b1) ∩ (a0 ∪ e)) ∩ (d
∪ b2)) |
76 | | id 59 |
. . . . . . . . . . . . . . . . . . 19
(((a1 ∪ b1) ∩ (a0 ∪ e)) ∩ (d
∪ b2)) = (((a1 ∪ b1) ∩ (a0 ∪ e)) ∩ (d
∪ b2)) |
77 | 76 | cm 61 |
. . . . . . . . . . . . . . . . . 18
(((a1 ∪ b1) ∩ (a0 ∪ e)) ∩ (d
∪ b2)) = (((a1 ∪ b1) ∩ (a0 ∪ e)) ∩ (d
∪ b2)) |
78 | 75, 77 | tr 62 |
. . . . . . . . . . . . . . . . 17
((a1 ∪ b1) ∩ (a0 ∪ e)) = (((a1 ∪ b1) ∩ (a0 ∪ e)) ∩ (d
∪ b2)) |
79 | | id 59 |
. . . . . . . . . . . . . . . . . 18
((a0 ∪ d) ∩ (e
∪ b2)) = ((a0 ∪ d) ∩ (e
∪ b2)) |
80 | | id 59 |
. . . . . . . . . . . . . . . . . 18
((a1 ∪ d) ∩ (b1 ∪ b2)) = ((a1 ∪ d) ∩ (b1 ∪ b2)) |
81 | | orcom 73 |
. . . . . . . . . . . . . . . . . . 19
(a0 ∪ a1) = (a1 ∪ a0) |
82 | | orcom 73 |
. . . . . . . . . . . . . . . . . . 19
(e ∪ b1) = (b1 ∪ e) |
83 | 81, 82 | 2an 79 |
. . . . . . . . . . . . . . . . . 18
((a0 ∪ a1) ∩ (e ∪ b1)) = ((a1 ∪ a0) ∩ (b1 ∪ e)) |
84 | 79, 80, 83, 76 | dp34 1181 |
. . . . . . . . . . . . . . . . 17
(((a1 ∪ b1) ∩ (a0 ∪ e)) ∩ (d
∪ b2)) ≤ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))))) |
85 | 78, 84 | bltr 138 |
. . . . . . . . . . . . . . . 16
((a1 ∪ b1) ∩ (a0 ∪ e)) ≤ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))))) |
86 | 35, 85 | lel2or 170 |
. . . . . . . . . . . . . . 15
((a1 ∪ e) ∪ ((a1 ∪ b1) ∩ (a0 ∪ e))) ≤ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))))) |
87 | 34, 86 | bltr 138 |
. . . . . . . . . . . . . 14
(((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e)) ≤ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))))) |
88 | 87 | lelan 167 |
. . . . . . . . . . . . 13
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e))) ≤ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))))) |
89 | 13, 88 | bltr 138 |
. . . . . . . . . . . 12
((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ b1) ∪ e)) ∩ ((a1 ∪ a0) ∪ e)) ≤ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))))) |
90 | 15, 89 | bltr 138 |
. . . . . . . . . . 11
((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))))) |
91 | | mldual 1124 |
. . . . . . . . . . . 12
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))))) = ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))))) |
92 | | ancom 74 |
. . . . . . . . . . . . 13
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))) = ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∩ ((a0 ∪ a1) ∩ (e ∪ b1))) |
93 | 92 | lor 70 |
. . . . . . . . . . . 12
((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))))) = ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∩ ((a0 ∪ a1) ∩ (e ∪ b1)))) |
94 | | lea 160 |
. . . . . . . . . . . . . 14
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ≤ ((a0 ∪ a1) ∩ (e ∪ b1)) |
95 | 94 | ml2i 1125 |
. . . . . . . . . . . . 13
((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∩ ((a0 ∪ a1) ∩ (e ∪ b1)))) = (((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))) ∩ ((a0 ∪ a1) ∩ (e ∪ b1))) |
96 | | ancom 74 |
. . . . . . . . . . . . 13
(((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))) ∩ ((a0 ∪ a1) ∩ (e ∪ b1))) = (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))))) |
97 | | ax-a2 31 |
. . . . . . . . . . . . . 14
((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))) = ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e))) |
98 | 97 | lan 77 |
. . . . . . . . . . . . 13
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))))) = (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)))) |
99 | 95, 96, 98 | 3tr 65 |
. . . . . . . . . . . 12
((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∩ ((a0 ∪ a1) ∩ (e ∪ b1)))) = (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)))) |
100 | 91, 93, 99 | 3tr 65 |
. . . . . . . . . . 11
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))))) = (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)))) |
101 | 90, 100 | lbtr 139 |
. . . . . . . . . 10
((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)))) |
102 | | mldual 1124 |
. . . . . . . . . . . 12
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)))) = ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e))) |
103 | 3 | ran 78 |
. . . . . . . . . . . . . 14
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) = (((a1 ∪ a0) ∩ (b1 ∪ e)) ∩ (a1 ∪ e)) |
104 | | anass 76 |
. . . . . . . . . . . . . 14
(((a1 ∪ a0) ∩ (b1 ∪ e)) ∩ (a1 ∪ e)) = ((a1 ∪ a0) ∩ ((b1 ∪ e) ∩ (a1 ∪ e))) |
105 | | leor 159 |
. . . . . . . . . . . . . . . . . 18
e ≤ (b1 ∪ e) |
106 | 105 | mldual2i 1127 |
. . . . . . . . . . . . . . . . 17
((b1 ∪ e) ∩ (a1 ∪ e)) = (((b1 ∪ e) ∩ a1) ∪ e) |
107 | | orcom 73 |
. . . . . . . . . . . . . . . . 17
(((b1 ∪ e) ∩ a1) ∪ e) = (e ∪
((b1 ∪ e) ∩ a1)) |
108 | | ancom 74 |
. . . . . . . . . . . . . . . . . 18
((b1 ∪ e) ∩ a1) = (a1 ∩ (b1 ∪ e)) |
109 | 108 | lor 70 |
. . . . . . . . . . . . . . . . 17
(e ∪ ((b1 ∪ e) ∩ a1)) = (e ∪ (a1 ∩ (b1 ∪ e))) |
110 | 106, 107,
109 | 3tr 65 |
. . . . . . . . . . . . . . . 16
((b1 ∪ e) ∩ (a1 ∪ e)) = (e ∪
(a1 ∩ (b1 ∪ e))) |
111 | 110 | lan 77 |
. . . . . . . . . . . . . . 15
((a1 ∪ a0) ∩ ((b1 ∪ e) ∩ (a1 ∪ e))) = ((a1 ∪ a0) ∩ (e ∪ (a1 ∩ (b1 ∪ e)))) |
112 | | leao1 162 |
. . . . . . . . . . . . . . . 16
(a1 ∩ (b1 ∪ e)) ≤ (a1 ∪ a0) |
113 | 112 | mldual2i 1127 |
. . . . . . . . . . . . . . 15
((a1 ∪ a0) ∩ (e ∪ (a1 ∩ (b1 ∪ e)))) = (((a1 ∪ a0) ∩ e) ∪ (a1 ∩ (b1 ∪ e))) |
114 | | orcom 73 |
. . . . . . . . . . . . . . . 16
(((a1 ∪ a0) ∩ e) ∪ (a1 ∩ (b1 ∪ e))) = ((a1 ∩ (b1 ∪ e)) ∪ ((a1 ∪ a0) ∩ e)) |
115 | | ancom 74 |
. . . . . . . . . . . . . . . . 17
((a1 ∪ a0) ∩ e) = (e ∩
(a1 ∪ a0)) |
116 | 115 | lor 70 |
. . . . . . . . . . . . . . . 16
((a1 ∩ (b1 ∪ e)) ∪ ((a1 ∪ a0) ∩ e)) = ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0))) |
117 | 114, 116 | tr 62 |
. . . . . . . . . . . . . . 15
(((a1 ∪ a0) ∩ e) ∪ (a1 ∩ (b1 ∪ e))) = ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0))) |
118 | 111, 113,
117 | 3tr 65 |
. . . . . . . . . . . . . 14
((a1 ∪ a0) ∩ ((b1 ∪ e) ∩ (a1 ∪ e))) = ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0))) |
119 | 103, 104,
118 | 3tr 65 |
. . . . . . . . . . . . 13
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) = ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0))) |
120 | 119 | lor 70 |
. . . . . . . . . . . 12
((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e))) = ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) |
121 | 102, 120 | tr 62 |
. . . . . . . . . . 11
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)))) = ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) |
122 | | lear 161 |
. . . . . . . . . . . 12
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))) ≤ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) |
123 | 122 | leror 152 |
. . . . . . . . . . 11
((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) ≤ ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) |
124 | 121, 123 | bltr 138 |
. . . . . . . . . 10
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)))) ≤ ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) |
125 | 101, 124 | letr 137 |
. . . . . . . . 9
((a0 ∪ a1) ∩ (e ∪ b1)) ≤ ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) |
126 | | orcom 73 |
. . . . . . . . . . . 12
((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0))) = ((e ∩ (a1 ∪ a0)) ∪ (a1 ∩ (b1 ∪ e))) |
127 | 126 | lor 70 |
. . . . . . . . . . 11
((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) = ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ ((e ∩ (a1 ∪ a0)) ∪ (a1 ∩ (b1 ∪ e)))) |
128 | | or4 84 |
. . . . . . . . . . . 12
((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ ((e ∩ (a1 ∪ a0)) ∪ (a1 ∩ (b1 ∪ e)))) = ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ (e ∩ (a1 ∪ a0))) ∪ (((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (a1 ∩ (b1 ∪ e)))) |
129 | | ancom 74 |
. . . . . . . . . . . . . . 15
((a0 ∪ d) ∩ (e
∪ b2)) = ((e ∪ b2) ∩ (a0 ∪ d)) |
130 | 79, 129 | tr 62 |
. . . . . . . . . . . . . 14
((a0 ∪ d) ∩ (e
∪ b2)) = ((e ∪ b2) ∩ (a0 ∪ d)) |
131 | 130 | ror 71 |
. . . . . . . . . . . . 13
(((a0 ∪ d) ∩ (e
∪ b2)) ∪ (e ∩ (a1 ∪ a0))) = (((e ∪ b2) ∩ (a0 ∪ d)) ∪ (e
∩ (a1 ∪ a0))) |
132 | 80 | ror 71 |
. . . . . . . . . . . . 13
(((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (a1 ∩ (b1 ∪ e))) = (((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (a1 ∩ (b1 ∪ e))) |
133 | 131, 132 | 2or 72 |
. . . . . . . . . . . 12
((((a0 ∪ d) ∩ (e
∪ b2)) ∪ (e ∩ (a1 ∪ a0))) ∪ (((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (a1 ∩ (b1 ∪ e)))) = ((((e
∪ b2) ∩ (a0 ∪ d)) ∪ (e
∩ (a1 ∪ a0))) ∪ (((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (a1 ∩ (b1 ∪ e)))) |
134 | 128, 133 | tr 62 |
. . . . . . . . . . 11
((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ ((e ∩ (a1 ∪ a0)) ∪ (a1 ∩ (b1 ∪ e)))) = ((((e
∪ b2) ∩ (a0 ∪ d)) ∪ (e
∩ (a1 ∪ a0))) ∪ (((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (a1 ∩ (b1 ∪ e)))) |
135 | | leao1 162 |
. . . . . . . . . . . . 13
(e ∩ (a1 ∪ a0)) ≤ (e ∪ b2) |
136 | 135 | mli 1126 |
. . . . . . . . . . . 12
(((e ∪ b2) ∩ (a0 ∪ d)) ∪ (e
∩ (a1 ∪ a0))) = ((e ∪ b2) ∩ ((a0 ∪ d) ∪ (e
∩ (a1 ∪ a0)))) |
137 | | leao1 162 |
. . . . . . . . . . . . 13
(a1 ∩ (b1 ∪ e)) ≤ (a1 ∪ d) |
138 | 137 | mli 1126 |
. . . . . . . . . . . 12
(((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (a1 ∩ (b1 ∪ e))) = ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (a1 ∩ (b1 ∪ e)))) |
139 | 136, 138 | 2or 72 |
. . . . . . . . . . 11
((((e ∪ b2) ∩ (a0 ∪ d)) ∪ (e
∩ (a1 ∪ a0))) ∪ (((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (a1 ∩ (b1 ∪ e)))) = (((e
∪ b2) ∩ ((a0 ∪ d) ∪ (e
∩ (a1 ∪ a0)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (a1 ∩ (b1 ∪ e))))) |
140 | 127, 134,
139 | 3tr 65 |
. . . . . . . . . 10
((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) = (((e ∪ b2) ∩ ((a0 ∪ d) ∪ (e
∩ (a1 ∪ a0)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (a1 ∩ (b1 ∪ e))))) |
141 | | or32 82 |
. . . . . . . . . . . . 13
((a0 ∪ d) ∪ (e
∩ (a1 ∪ a0))) = ((a0 ∪ (e ∩ (a1 ∪ a0))) ∪ d) |
142 | | ml3 1130 |
. . . . . . . . . . . . . . 15
(a0 ∪ (e ∩ (a1 ∪ a0))) = (a0 ∪ (a1 ∩ (e ∪ a0))) |
143 | | orcom 73 |
. . . . . . . . . . . . . . . . 17
(e ∪ a0) = (a0 ∪ e) |
144 | 143 | lan 77 |
. . . . . . . . . . . . . . . 16
(a1 ∩ (e ∪ a0)) = (a1 ∩ (a0 ∪ e)) |
145 | 144 | lor 70 |
. . . . . . . . . . . . . . 15
(a0 ∪ (a1 ∩ (e ∪ a0))) = (a0 ∪ (a1 ∩ (a0 ∪ e))) |
146 | 142, 145 | tr 62 |
. . . . . . . . . . . . . 14
(a0 ∪ (e ∩ (a1 ∪ a0))) = (a0 ∪ (a1 ∩ (a0 ∪ e))) |
147 | 146 | ror 71 |
. . . . . . . . . . . . 13
((a0 ∪ (e ∩ (a1 ∪ a0))) ∪ d) = ((a0 ∪ (a1 ∩ (a0 ∪ e))) ∪ d) |
148 | | or32 82 |
. . . . . . . . . . . . 13
((a0 ∪ (a1 ∩ (a0 ∪ e))) ∪ d) =
((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e))) |
149 | 141, 147,
148 | 3tr 65 |
. . . . . . . . . . . 12
((a0 ∪ d) ∪ (e
∩ (a1 ∪ a0))) = ((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e))) |
150 | 149 | lan 77 |
. . . . . . . . . . 11
((e ∪ b2) ∩ ((a0 ∪ d) ∪ (e
∩ (a1 ∪ a0)))) = ((e ∪ b2) ∩ ((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e)))) |
151 | | or32 82 |
. . . . . . . . . . . . 13
((b1 ∪ b2) ∪ (a1 ∩ (b1 ∪ e))) = ((b1 ∪ (a1 ∩ (b1 ∪ e))) ∪ b2) |
152 | | orcom 73 |
. . . . . . . . . . . . . . . . 17
(b1 ∪ e) = (e ∪
b1) |
153 | 152 | lan 77 |
. . . . . . . . . . . . . . . 16
(a1 ∩ (b1 ∪ e)) = (a1 ∩ (e ∪ b1)) |
154 | 153 | lor 70 |
. . . . . . . . . . . . . . 15
(b1 ∪ (a1 ∩ (b1 ∪ e))) = (b1 ∪ (a1 ∩ (e ∪ b1))) |
155 | | ml3 1130 |
. . . . . . . . . . . . . . 15
(b1 ∪ (a1 ∩ (e ∪ b1))) = (b1 ∪ (e ∩ (a1 ∪ b1))) |
156 | 154, 155 | tr 62 |
. . . . . . . . . . . . . 14
(b1 ∪ (a1 ∩ (b1 ∪ e))) = (b1 ∪ (e ∩ (a1 ∪ b1))) |
157 | 156 | ror 71 |
. . . . . . . . . . . . 13
((b1 ∪ (a1 ∩ (b1 ∪ e))) ∪ b2) = ((b1 ∪ (e ∩ (a1 ∪ b1))) ∪ b2) |
158 | | or32 82 |
. . . . . . . . . . . . 13
((b1 ∪ (e ∩ (a1 ∪ b1))) ∪ b2) = ((b1 ∪ b2) ∪ (e ∩ (a1 ∪ b1))) |
159 | 151, 157,
158 | 3tr 65 |
. . . . . . . . . . . 12
((b1 ∪ b2) ∪ (a1 ∩ (b1 ∪ e))) = ((b1 ∪ b2) ∪ (e ∩ (a1 ∪ b1))) |
160 | 159 | lan 77 |
. . . . . . . . . . 11
((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (a1 ∩ (b1 ∪ e)))) = ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (e ∩ (a1 ∪ b1)))) |
161 | 150, 160 | 2or 72 |
. . . . . . . . . 10
(((e ∪ b2) ∩ ((a0 ∪ d) ∪ (e
∩ (a1 ∪ a0)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (a1 ∩ (b1 ∪ e))))) = (((e
∪ b2) ∩ ((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (e ∩ (a1 ∪ b1))))) |
162 | 140, 161 | tr 62 |
. . . . . . . . 9
((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) = (((e ∪ b2) ∩ ((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (e ∩ (a1 ∪ b1))))) |
163 | 125, 162 | lbtr 139 |
. . . . . . . 8
((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((e ∪ b2) ∩ ((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (e ∩ (a1 ∪ b1))))) |
164 | | lea 160 |
. . . . . . . . . . . 12
(a1 ∩ (a0 ∪ e)) ≤ a1 |
165 | 27 | leran 153 |
. . . . . . . . . . . . 13
(a1 ∩ (a0 ∪ e)) ≤ ((a1 ∪ b1) ∩ (a0 ∪ e)) |
166 | 165, 73 | letr 137 |
. . . . . . . . . . . 12
(a1 ∩ (a0 ∪ e)) ≤ (d
∪ b2) |
167 | 164, 166 | ler2an 173 |
. . . . . . . . . . 11
(a1 ∩ (a0 ∪ e)) ≤ (a1 ∩ (d ∪ b2)) |
168 | 167 | lelor 166 |
. . . . . . . . . 10
((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e))) ≤ ((a0 ∪ d) ∪ (a1 ∩ (d ∪ b2))) |
169 | 168 | lelan 167 |
. . . . . . . . 9
((e ∪ b2) ∩ ((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e)))) ≤ ((e
∪ b2) ∩ ((a0 ∪ d) ∪ (a1 ∩ (d ∪ b2)))) |
170 | | lea 160 |
. . . . . . . . . . . 12
(e ∩ (a1 ∪ b1)) ≤ e |
171 | | lear 161 |
. . . . . . . . . . . . . 14
(e ∩ (a1 ∪ b1)) ≤ (a1 ∪ b1) |
172 | | leao3 164 |
. . . . . . . . . . . . . 14
(e ∩ (a1 ∪ b1)) ≤ (a0 ∪ e) |
173 | 171, 172 | ler2an 173 |
. . . . . . . . . . . . 13
(e ∩ (a1 ∪ b1)) ≤ ((a1 ∪ b1) ∩ (a0 ∪ e)) |
174 | 173, 73 | letr 137 |
. . . . . . . . . . . 12
(e ∩ (a1 ∪ b1)) ≤ (d ∪ b2) |
175 | 170, 174 | ler2an 173 |
. . . . . . . . . . 11
(e ∩ (a1 ∪ b1)) ≤ (e ∩ (d ∪
b2)) |
176 | 175 | lelor 166 |
. . . . . . . . . 10
((b1 ∪ b2) ∪ (e ∩ (a1 ∪ b1))) ≤ ((b1 ∪ b2) ∪ (e ∩ (d ∪
b2))) |
177 | 176 | lelan 167 |
. . . . . . . . 9
((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (e ∩ (a1 ∪ b1)))) ≤ ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (e ∩ (d ∪
b2)))) |
178 | 169, 177 | le2or 168 |
. . . . . . . 8
(((e ∪ b2) ∩ ((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (e ∩ (a1 ∪ b1))))) ≤ (((e ∪ b2) ∩ ((a0 ∪ d) ∪ (a1 ∩ (d ∪ b2)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (e ∩ (d ∪
b2))))) |
179 | 163, 178 | letr 137 |
. . . . . . 7
((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((e ∪ b2) ∩ ((a0 ∪ d) ∪ (a1 ∩ (d ∪ b2)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (e ∩ (d ∪
b2))))) |
180 | | ax-a2 31 |
. . . . . . . . . . . . . . 15
(d ∪ b2) = (b2 ∪ d) |
181 | 180 | lan 77 |
. . . . . . . . . . . . . 14
(a1 ∩ (d ∪ b2)) = (a1 ∩ (b2 ∪ d)) |
182 | 181 | lor 70 |
. . . . . . . . . . . . 13
(d ∪ (a1 ∩ (d ∪ b2))) = (d ∪ (a1 ∩ (b2 ∪ d))) |
183 | | ml3 1130 |
. . . . . . . . . . . . 13
(d ∪ (a1 ∩ (b2 ∪ d))) = (d ∪
(b2 ∩ (a1 ∪ d))) |
184 | 182, 183 | tr 62 |
. . . . . . . . . . . 12
(d ∪ (a1 ∩ (d ∪ b2))) = (d ∪ (b2 ∩ (a1 ∪ d))) |
185 | 184 | lor 70 |
. . . . . . . . . . 11
(a0 ∪ (d ∪ (a1 ∩ (d ∪ b2)))) = (a0 ∪ (d ∪ (b2 ∩ (a1 ∪ d)))) |
186 | | orass 75 |
. . . . . . . . . . 11
((a0 ∪ d) ∪ (a1 ∩ (d ∪ b2))) = (a0 ∪ (d ∪ (a1 ∩ (d ∪ b2)))) |
187 | | orass 75 |
. . . . . . . . . . 11
((a0 ∪ d) ∪ (b2 ∩ (a1 ∪ d))) = (a0 ∪ (d ∪ (b2 ∩ (a1 ∪ d)))) |
188 | 185, 186,
187 | 3tr1 63 |
. . . . . . . . . 10
((a0 ∪ d) ∪ (a1 ∩ (d ∪ b2))) = ((a0 ∪ d) ∪ (b2 ∩ (a1 ∪ d))) |
189 | 188 | lan 77 |
. . . . . . . . 9
((e ∪ b2) ∩ ((a0 ∪ d) ∪ (a1 ∩ (d ∪ b2)))) = ((e ∪ b2) ∩ ((a0 ∪ d) ∪ (b2 ∩ (a1 ∪ d)))) |
190 | | ml3 1130 |
. . . . . . . . . . . 12
(b2 ∪ (e ∩ (d ∪
b2))) = (b2 ∪ (d ∩ (e ∪
b2))) |
191 | 190 | lor 70 |
. . . . . . . . . . 11
(b1 ∪ (b2 ∪ (e ∩ (d ∪
b2)))) = (b1 ∪ (b2 ∪ (d ∩ (e ∪
b2)))) |
192 | | orass 75 |
. . . . . . . . . . 11
((b1 ∪ b2) ∪ (e ∩ (d ∪
b2))) = (b1 ∪ (b2 ∪ (e ∩ (d ∪
b2)))) |
193 | | orass 75 |
. . . . . . . . . . 11
((b1 ∪ b2) ∪ (d ∩ (e ∪
b2))) = (b1 ∪ (b2 ∪ (d ∩ (e ∪
b2)))) |
194 | 191, 192,
193 | 3tr1 63 |
. . . . . . . . . 10
((b1 ∪ b2) ∪ (e ∩ (d ∪
b2))) = ((b1 ∪ b2) ∪ (d ∩ (e ∪
b2))) |
195 | 194 | lan 77 |
. . . . . . . . 9
((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (e ∩ (d ∪
b2)))) = ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (d ∩ (e ∪
b2)))) |
196 | 189, 195 | 2or 72 |
. . . . . . . 8
(((e ∪ b2) ∩ ((a0 ∪ d) ∪ (a1 ∩ (d ∪ b2)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (e ∩ (d ∪
b2))))) = (((e ∪ b2) ∩ ((a0 ∪ d) ∪ (b2 ∩ (a1 ∪ d)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (d ∩ (e ∪
b2))))) |
197 | | leao3 164 |
. . . . . . . . . . 11
(b2 ∩ (a1 ∪ d)) ≤ (e
∪ b2) |
198 | 197 | mldual2i 1127 |
. . . . . . . . . 10
((e ∪ b2) ∩ ((a0 ∪ d) ∪ (b2 ∩ (a1 ∪ d)))) = (((e
∪ b2) ∩ (a0 ∪ d)) ∪ (b2 ∩ (a1 ∪ d))) |
199 | 130 | ror 71 |
. . . . . . . . . . 11
(((a0 ∪ d) ∩ (e
∪ b2)) ∪ (b2 ∩ (a1 ∪ d))) = (((e
∪ b2) ∩ (a0 ∪ d)) ∪ (b2 ∩ (a1 ∪ d))) |
200 | 199 | cm 61 |
. . . . . . . . . 10
(((e ∪ b2) ∩ (a0 ∪ d)) ∪ (b2 ∩ (a1 ∪ d))) = (((a0 ∪ d) ∩ (e
∪ b2)) ∪ (b2 ∩ (a1 ∪ d))) |
201 | 198, 200 | tr 62 |
. . . . . . . . 9
((e ∪ b2) ∩ ((a0 ∪ d) ∪ (b2 ∩ (a1 ∪ d)))) = (((a0 ∪ d) ∩ (e
∪ b2)) ∪ (b2 ∩ (a1 ∪ d))) |
202 | | leao3 164 |
. . . . . . . . . . 11
(d ∩ (e ∪ b2)) ≤ (a1 ∪ d) |
203 | 202 | mldual2i 1127 |
. . . . . . . . . 10
((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (d ∩ (e ∪
b2)))) = (((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (d ∩ (e ∪
b2))) |
204 | 80 | ror 71 |
. . . . . . . . . . 11
(((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (d ∩ (e ∪
b2))) = (((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (d ∩ (e ∪
b2))) |
205 | 204 | cm 61 |
. . . . . . . . . 10
(((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (d ∩ (e ∪
b2))) = (((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (d ∩ (e ∪
b2))) |
206 | 203, 205 | tr 62 |
. . . . . . . . 9
((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (d ∩ (e ∪
b2)))) = (((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (d ∩ (e ∪
b2))) |
207 | 201, 206 | 2or 72 |
. . . . . . . 8
(((e ∪ b2) ∩ ((a0 ∪ d) ∪ (b2 ∩ (a1 ∪ d)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (d ∩ (e ∪
b2))))) = ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ (b2 ∩ (a1 ∪ d))) ∪ (((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (d ∩ (e ∪
b2)))) |
208 | | or4 84 |
. . . . . . . . 9
((((a0 ∪ d) ∩ (e
∪ b2)) ∪ (b2 ∩ (a1 ∪ d))) ∪ (((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (d ∩ (e ∪
b2)))) = ((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ ((b2 ∩ (a1 ∪ d)) ∪ (d
∩ (e ∪ b2)))) |
209 | | orcom 73 |
. . . . . . . . 9
((((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) ∪ ((b2 ∩ (a1 ∪ d)) ∪ (d
∩ (e ∪ b2)))) = (((b2 ∩ (a1 ∪ d)) ∪ (d
∩ (e ∪ b2))) ∪ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))) |
210 | | ancom 74 |
. . . . . . . . . . . . 13
(b2 ∩ (a1 ∪ d)) = ((a1 ∪ d) ∩ b2) |
211 | | leor 159 |
. . . . . . . . . . . . . 14
b2 ≤ (b1 ∪ b2) |
212 | 211 | lelan 167 |
. . . . . . . . . . . . 13
((a1 ∪ d) ∩ b2) ≤ ((a1 ∪ d) ∩ (b1 ∪ b2)) |
213 | 210, 212 | bltr 138 |
. . . . . . . . . . . 12
(b2 ∩ (a1 ∪ d)) ≤ ((a1 ∪ d) ∩ (b1 ∪ b2)) |
214 | | leor 159 |
. . . . . . . . . . . . 13
d ≤ (a0 ∪ d) |
215 | 214 | leran 153 |
. . . . . . . . . . . 12
(d ∩ (e ∪ b2)) ≤ ((a0 ∪ d) ∩ (e
∪ b2)) |
216 | 213, 215 | le2or 168 |
. . . . . . . . . . 11
((b2 ∩ (a1 ∪ d)) ∪ (d
∩ (e ∪ b2))) ≤ (((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ ((a0 ∪ d) ∩ (e
∪ b2))) |
217 | 80, 79 | 2or 72 |
. . . . . . . . . . . . 13
(((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ ((a0 ∪ d) ∩ (e
∪ b2))) = (((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ ((a0 ∪ d) ∩ (e
∪ b2))) |
218 | 217 | cm 61 |
. . . . . . . . . . . 12
(((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ ((a0 ∪ d) ∩ (e
∪ b2))) = (((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ ((a0 ∪ d) ∩ (e
∪ b2))) |
219 | | orcom 73 |
. . . . . . . . . . . 12
(((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ ((a0 ∪ d) ∩ (e
∪ b2))) = (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) |
220 | 218, 219 | tr 62 |
. . . . . . . . . . 11
(((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ ((a0 ∪ d) ∩ (e
∪ b2))) = (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) |
221 | 216, 220 | lbtr 139 |
. . . . . . . . . 10
((b2 ∩ (a1 ∪ d)) ∪ (d
∩ (e ∪ b2))) ≤ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) |
222 | 221 | df-le2 131 |
. . . . . . . . 9
(((b2 ∩ (a1 ∪ d)) ∪ (d
∩ (e ∪ b2))) ∪ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2)))) = (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) |
223 | 208, 209,
222 | 3tr 65 |
. . . . . . . 8
((((a0 ∪ d) ∩ (e
∪ b2)) ∪ (b2 ∩ (a1 ∪ d))) ∪ (((a1 ∪ d) ∩ (b1 ∪ b2)) ∪ (d ∩ (e ∪
b2)))) = (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) |
224 | 196, 207,
223 | 3tr 65 |
. . . . . . 7
(((e ∪ b2) ∩ ((a0 ∪ d) ∪ (a1 ∩ (d ∪ b2)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b2) ∪ (e ∩ (d ∪
b2))))) = (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) |
225 | 179, 224 | lbtr 139 |
. . . . . 6
((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) |
226 | 38 | ror 71 |
. . . . . . 7
(e ∪ b1) = ((b0 ∩ (a0 ∪ p0)) ∪ b1) |
227 | 226 | lan 77 |
. . . . . 6
((a0 ∪ a1) ∩ (e ∪ b1)) = ((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) |
228 | 66 | lor 70 |
. . . . . . . 8
(a0 ∪ d) = (a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) |
229 | 38 | ror 71 |
. . . . . . . 8
(e ∪ b2) = ((b0 ∩ (a0 ∪ p0)) ∪ b2) |
230 | 228, 229 | 2an 79 |
. . . . . . 7
((a0 ∪ d) ∩ (e
∪ b2)) = ((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) |
231 | 66 | lor 70 |
. . . . . . . 8
(a1 ∪ d) = (a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) |
232 | 231 | ran 78 |
. . . . . . 7
((a1 ∪ d) ∩ (b1 ∪ b2)) = ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2)) |
233 | 230, 232 | 2or 72 |
. . . . . 6
(((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) = (((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2))) |
234 | 225, 227,
233 | le3tr2 141 |
. . . . 5
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2))) |
235 | | or12 80 |
. . . . . . . 8
(a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) = (a2 ∪ (a0 ∪ (a0 ∩ (a1 ∪ b1)))) |
236 | | orabs 120 |
. . . . . . . . 9
(a0 ∪ (a0 ∩ (a1 ∪ b1))) = a0 |
237 | 236 | lor 70 |
. . . . . . . 8
(a2 ∪ (a0 ∪ (a0 ∩ (a1 ∪ b1)))) = (a2 ∪ a0) |
238 | | orcom 73 |
. . . . . . . 8
(a2 ∪ a0) = (a0 ∪ a2) |
239 | 235, 237,
238 | 3tr 65 |
. . . . . . 7
(a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) = (a0 ∪ a2) |
240 | 239 | ran 78 |
. . . . . 6
((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) = ((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) |
241 | | orass 75 |
. . . . . . . 8
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) = (a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) |
242 | 241 | ran 78 |
. . . . . . 7
(((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2)) = ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2)) |
243 | 242 | cm 61 |
. . . . . 6
((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2)) = (((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2)) |
244 | 240, 243 | 2or 72 |
. . . . 5
(((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2))) = (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2))) |
245 | 234, 244 | lbtr 139 |
. . . 4
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2))) |
246 | | ax-a2 31 |
. . . . . . . . . 10
(a1 ∪ a2) = (a2 ∪ a1) |
247 | | ax-a2 31 |
. . . . . . . . . . 11
(a1 ∪ b1) = (b1 ∪ a1) |
248 | 247 | lan 77 |
. . . . . . . . . 10
(a0 ∩ (a1 ∪ b1)) = (a0 ∩ (b1 ∪ a1)) |
249 | 246, 248 | 2or 72 |
. . . . . . . . 9
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) = ((a2 ∪ a1) ∪ (a0 ∩ (b1 ∪ a1))) |
250 | | orass 75 |
. . . . . . . . 9
((a2 ∪ a1) ∪ (a0 ∩ (b1 ∪ a1))) = (a2 ∪ (a1 ∪ (a0 ∩ (b1 ∪ a1)))) |
251 | 249, 250 | tr 62 |
. . . . . . . 8
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) = (a2 ∪ (a1 ∪ (a0 ∩ (b1 ∪ a1)))) |
252 | | ml3le 1129 |
. . . . . . . . 9
(a1 ∪ (a0 ∩ (b1 ∪ a1))) ≤ (a1 ∪ (b1 ∩ (a0 ∪ a1))) |
253 | 252 | lelor 166 |
. . . . . . . 8
(a2 ∪ (a1 ∪ (a0 ∩ (b1 ∪ a1)))) ≤ (a2 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) |
254 | 251, 253 | bltr 138 |
. . . . . . 7
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ≤ (a2 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) |
255 | | orass 75 |
. . . . . . . . 9
((a2 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) = (a2 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) |
256 | 255 | cm 61 |
. . . . . . . 8
(a2 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) = ((a2 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) |
257 | | ax-a2 31 |
. . . . . . . . 9
(a2 ∪ a1) = (a1 ∪ a2) |
258 | 257 | ror 71 |
. . . . . . . 8
((a2 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) = ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) |
259 | 256, 258 | tr 62 |
. . . . . . 7
(a2 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) = ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) |
260 | 254, 259 | lbtr 139 |
. . . . . 6
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ≤ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) |
261 | 260 | leran 153 |
. . . . 5
(((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2)) ≤ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2)) |
262 | 261 | lelor 166 |
. . . 4
(((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2))) ≤ (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2))) |
263 | 245, 262 | letr 137 |
. . 3
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2))) |
264 | | lea 160 |
. . . . . . 7
(b0 ∩ (a0 ∪ p0)) ≤ b0 |
265 | 264 | leror 152 |
. . . . . 6
((b0 ∩ (a0 ∪ p0)) ∪ b2) ≤ (b0 ∪ b2) |
266 | 265 | lelan 167 |
. . . . 5
((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ≤ ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
267 | | leao1 162 |
. . . . . . . 8
(b1 ∩ (a0 ∪ a1)) ≤ (b1 ∪ b2) |
268 | 267 | mldual2i 1127 |
. . . . . . 7
((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) = (((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b1 ∩ (a0 ∪ a1))) |
269 | | ancom 74 |
. . . . . . 7
((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) = (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2)) |
270 | | ancom 74 |
. . . . . . . 8
((b1 ∪ b2) ∩ (a1 ∪ a2)) = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
271 | 270 | ror 71 |
. . . . . . 7
(((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b1 ∩ (a0 ∪ a1))) = (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1))) |
272 | 268, 269,
271 | 3tr2 64 |
. . . . . 6
(((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2)) = (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1))) |
273 | 272 | bile 142 |
. . . . 5
(((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2)) ≤ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1))) |
274 | 266, 273 | le2or 168 |
. . . 4
(((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2))) ≤ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |
275 | | or12 80 |
. . . 4
(((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) = (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |
276 | 274, 275 | lbtr 139 |
. . 3
(((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2))) ≤ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |
277 | 263, 276 | letr 137 |
. 2
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |
278 | | xxdp.c0 |
. . . . 5
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
279 | | xxdp.c1 |
. . . . . 6
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
280 | 279 | ror 71 |
. . . . 5
(c1 ∪ (b1 ∩ (a0 ∪ a1))) = (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1))) |
281 | 278, 280 | 2or 72 |
. . . 4
(c0 ∪ (c1 ∪ (b1 ∩ (a0 ∪ a1)))) = (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |
282 | 281 | cm 61 |
. . 3
(((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) = (c0 ∪ (c1 ∪ (b1 ∩ (a0 ∪ a1)))) |
283 | | orass 75 |
. . . 4
((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) = (c0 ∪ (c1 ∪ (b1 ∩ (a0 ∪ a1)))) |
284 | 283 | cm 61 |
. . 3
(c0 ∪ (c1 ∪ (b1 ∩ (a0 ∪ a1)))) = ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
285 | 282, 284 | tr 62 |
. 2
(((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) = ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
286 | 277, 285 | lbtr 139 |
1
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |