Proof of Theorem xxdp41
Step | Hyp | Ref
| Expression |
1 | | xxdp.c2 |
. . . . . . . . . . . 12
c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
2 | | ancom 74 |
. . . . . . . . . . . 12
((a0 ∪ a1) ∩ (b0 ∪ b1)) = ((b0 ∪ b1) ∩ (a0 ∪ a1)) |
3 | 1, 2 | tr 62 |
. . . . . . . . . . 11
c2 = ((b0 ∪ b1) ∩ (a0 ∪ a1)) |
4 | | leor 159 |
. . . . . . . . . . . . 13
b0 ≤ (a0 ∪ b0) |
5 | 4 | leror 152 |
. . . . . . . . . . . 12
(b0 ∪ b1) ≤ ((a0 ∪ b0) ∪ b1) |
6 | | leo 158 |
. . . . . . . . . . . 12
(a0 ∪ a1) ≤ ((a0 ∪ a1) ∪ b1) |
7 | 5, 6 | le2an 169 |
. . . . . . . . . . 11
((b0 ∪ b1) ∩ (a0 ∪ a1)) ≤ (((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) |
8 | 3, 7 | bltr 138 |
. . . . . . . . . 10
c2 ≤ (((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) |
9 | 8 | df2le2 136 |
. . . . . . . . 9
(c2 ∩ (((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1))) = c2 |
10 | 9 | cm 61 |
. . . . . . . 8
c2 = (c2 ∩ (((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1))) |
11 | | anass 76 |
. . . . . . . . 9
((c2 ∩ ((a0 ∪ b0) ∪ b1)) ∩ ((a0 ∪ a1) ∪ b1)) = (c2 ∩ (((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1))) |
12 | 11 | cm 61 |
. . . . . . . 8
(c2 ∩ (((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1))) = ((c2 ∩ ((a0 ∪ b0) ∪ b1)) ∩ ((a0 ∪ a1) ∪ b1)) |
13 | 10, 12 | tr 62 |
. . . . . . 7
c2 = ((c2 ∩ ((a0 ∪ b0) ∪ b1)) ∩ ((a0 ∪ a1) ∪ b1)) |
14 | | ax-a2 31 |
. . . . . . . . . . . . . . . 16
(a0 ∪ a1) = (a1 ∪ a0) |
15 | 14 | ror 71 |
. . . . . . . . . . . . . . 15
((a0 ∪ a1) ∪ b1) = ((a1 ∪ a0) ∪ b1) |
16 | | or32 82 |
. . . . . . . . . . . . . . 15
((a1 ∪ a0) ∪ b1) = ((a1 ∪ b1) ∪ a0) |
17 | 15, 16 | tr 62 |
. . . . . . . . . . . . . 14
((a0 ∪ a1) ∪ b1) = ((a1 ∪ b1) ∪ a0) |
18 | 17 | lan 77 |
. . . . . . . . . . . . 13
(((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) = (((a0 ∪ b0) ∪ b1) ∩ ((a1 ∪ b1) ∪ a0)) |
19 | | ancom 74 |
. . . . . . . . . . . . 13
(((a0 ∪ b0) ∪ b1) ∩ ((a1 ∪ b1) ∪ a0)) = (((a1 ∪ b1) ∪ a0) ∩ ((a0 ∪ b0) ∪ b1)) |
20 | 18, 19 | tr 62 |
. . . . . . . . . . . 12
(((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) = (((a1 ∪ b1) ∪ a0) ∩ ((a0 ∪ b0) ∪ b1)) |
21 | | leor 159 |
. . . . . . . . . . . . . 14
b1 ≤ (a1 ∪ b1) |
22 | 21 | ler 149 |
. . . . . . . . . . . . 13
b1 ≤ ((a1 ∪ b1) ∪ a0) |
23 | 22 | mldual2i 1127 |
. . . . . . . . . . . 12
(((a1 ∪ b1) ∪ a0) ∩ ((a0 ∪ b0) ∪ b1)) = ((((a1 ∪ b1) ∪ a0) ∩ (a0 ∪ b0)) ∪ b1) |
24 | | ancom 74 |
. . . . . . . . . . . . . 14
(((a1 ∪ b1) ∪ a0) ∩ (a0 ∪ b0)) = ((a0 ∪ b0) ∩ ((a1 ∪ b1) ∪ a0)) |
25 | | leo 158 |
. . . . . . . . . . . . . . 15
a0 ≤ (a0 ∪ b0) |
26 | 25 | mldual2i 1127 |
. . . . . . . . . . . . . 14
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∪ a0)) = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∪ a0) |
27 | 24, 26 | tr 62 |
. . . . . . . . . . . . 13
(((a1 ∪ b1) ∪ a0) ∩ (a0 ∪ b0)) = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∪ a0) |
28 | 27 | ror 71 |
. . . . . . . . . . . 12
((((a1 ∪ b1) ∪ a0) ∩ (a0 ∪ b0)) ∪ b1) = ((((a0 ∪ b0) ∩ (a1 ∪ b1)) ∪ a0) ∪ b1) |
29 | 20, 23, 28 | 3tr 65 |
. . . . . . . . . . 11
(((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) = ((((a0 ∪ b0) ∩ (a1 ∪ b1)) ∪ a0) ∪ b1) |
30 | | orass 75 |
. . . . . . . . . . 11
((((a0 ∪ b0) ∩ (a1 ∪ b1)) ∪ a0) ∪ b1) = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∪ (a0 ∪ b1)) |
31 | | orcom 73 |
. . . . . . . . . . 11
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∪ (a0 ∪ b1)) = ((a0 ∪ b1) ∪ ((a0 ∪ b0) ∩ (a1 ∪ b1))) |
32 | 29, 30, 31 | 3tr 65 |
. . . . . . . . . 10
(((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) = ((a0 ∪ b1) ∪ ((a0 ∪ b0) ∩ (a1 ∪ b1))) |
33 | | leo 158 |
. . . . . . . . . . 11
(a0 ∪ b1) ≤ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
34 | | xxdp.p2 |
. . . . . . . . . . . . . . . . 17
p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1)) |
35 | 34 | cm 61 |
. . . . . . . . . . . . . . . 16
((a0 ∪ b0) ∩ (a1 ∪ b1)) = p2 |
36 | | xxdp.1 |
. . . . . . . . . . . . . . . 16
p2 ≤ (a2 ∪ b2) |
37 | 35, 36 | bltr 138 |
. . . . . . . . . . . . . . 15
((a0 ∪ b0) ∩ (a1 ∪ b1)) ≤ (a2 ∪ b2) |
38 | 37 | df2le2 136 |
. . . . . . . . . . . . . 14
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) = ((a0 ∪ b0) ∩ (a1 ∪ b1)) |
39 | 38 | cm 61 |
. . . . . . . . . . . . 13
((a0 ∪ b0) ∩ (a1 ∪ b1)) = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
40 | | xxdp.p |
. . . . . . . . . . . . . 14
p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
41 | 40 | cm 61 |
. . . . . . . . . . . . 13
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) = p |
42 | 39, 41 | tr 62 |
. . . . . . . . . . . 12
((a0 ∪ b0) ∩ (a1 ∪ b1)) = p |
43 | | xxdp.c0 |
. . . . . . . . . . . . 13
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
44 | | xxdp.c1 |
. . . . . . . . . . . . 13
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
45 | 43, 44, 1, 40 | dp34 1181 |
. . . . . . . . . . . 12
p ≤ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
46 | 42, 45 | bltr 138 |
. . . . . . . . . . 11
((a0 ∪ b0) ∩ (a1 ∪ b1)) ≤ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
47 | 33, 46 | lel2or 170 |
. . . . . . . . . 10
((a0 ∪ b1) ∪ ((a0 ∪ b0) ∩ (a1 ∪ b1))) ≤ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
48 | 32, 47 | bltr 138 |
. . . . . . . . 9
(((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) ≤ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
49 | 48 | lelan 167 |
. . . . . . . 8
(c2 ∩ (((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1))) ≤ (c2 ∩ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
50 | 11, 49 | bltr 138 |
. . . . . . 7
((c2 ∩ ((a0 ∪ b0) ∪ b1)) ∩ ((a0 ∪ a1) ∪ b1)) ≤ (c2 ∩ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
51 | 13, 50 | bltr 138 |
. . . . . 6
c2 ≤ (c2 ∩ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
52 | | mldual 1124 |
. . . . . . 7
(c2 ∩ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = ((c2 ∩ (a0 ∪ b1)) ∪ (c2 ∩ (c0 ∪ c1))) |
53 | | ancom 74 |
. . . . . . . 8
(c2 ∩ (c0 ∪ c1)) = ((c0 ∪ c1) ∩ c2) |
54 | 53 | lor 70 |
. . . . . . 7
((c2 ∩ (a0 ∪ b1)) ∪ (c2 ∩ (c0 ∪ c1))) = ((c2 ∩ (a0 ∪ b1)) ∪ ((c0 ∪ c1) ∩ c2)) |
55 | | lea 160 |
. . . . . . . . 9
(c2 ∩ (a0 ∪ b1)) ≤ c2 |
56 | 55 | ml2i 1125 |
. . . . . . . 8
((c2 ∩ (a0 ∪ b1)) ∪ ((c0 ∪ c1) ∩ c2)) = (((c2 ∩ (a0 ∪ b1)) ∪ (c0 ∪ c1)) ∩ c2) |
57 | | ancom 74 |
. . . . . . . 8
(((c2 ∩ (a0 ∪ b1)) ∪ (c0 ∪ c1)) ∩ c2) = (c2 ∩ ((c2 ∩ (a0 ∪ b1)) ∪ (c0 ∪ c1))) |
58 | | ax-a2 31 |
. . . . . . . . 9
((c2 ∩ (a0 ∪ b1)) ∪ (c0 ∪ c1)) = ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1))) |
59 | 58 | lan 77 |
. . . . . . . 8
(c2 ∩ ((c2 ∩ (a0 ∪ b1)) ∪ (c0 ∪ c1))) = (c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) |
60 | 56, 57, 59 | 3tr 65 |
. . . . . . 7
((c2 ∩ (a0 ∪ b1)) ∪ ((c0 ∪ c1) ∩ c2)) = (c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) |
61 | 52, 54, 60 | 3tr 65 |
. . . . . 6
(c2 ∩ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) |
62 | 51, 61 | lbtr 139 |
. . . . 5
c2 ≤ (c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) |
63 | | mldual 1124 |
. . . . . . 7
(c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) = ((c2 ∩ (c0 ∪ c1)) ∪ (c2 ∩ (a0 ∪ b1))) |
64 | 1 | ran 78 |
. . . . . . . . 9
(c2 ∩ (a0 ∪ b1)) = (((a0 ∪ a1) ∩ (b0 ∪ b1)) ∩ (a0 ∪ b1)) |
65 | | anass 76 |
. . . . . . . . 9
(((a0 ∪ a1) ∩ (b0 ∪ b1)) ∩ (a0 ∪ b1)) = ((a0 ∪ a1) ∩ ((b0 ∪ b1) ∩ (a0 ∪ b1))) |
66 | | leor 159 |
. . . . . . . . . . . . 13
b1 ≤ (b0 ∪ b1) |
67 | 66 | mldual2i 1127 |
. . . . . . . . . . . 12
((b0 ∪ b1) ∩ (a0 ∪ b1)) = (((b0 ∪ b1) ∩ a0) ∪ b1) |
68 | | orcom 73 |
. . . . . . . . . . . 12
(((b0 ∪ b1) ∩ a0) ∪ b1) = (b1 ∪ ((b0 ∪ b1) ∩ a0)) |
69 | | ancom 74 |
. . . . . . . . . . . . 13
((b0 ∪ b1) ∩ a0) = (a0 ∩ (b0 ∪ b1)) |
70 | 69 | lor 70 |
. . . . . . . . . . . 12
(b1 ∪ ((b0 ∪ b1) ∩ a0)) = (b1 ∪ (a0 ∩ (b0 ∪ b1))) |
71 | 67, 68, 70 | 3tr 65 |
. . . . . . . . . . 11
((b0 ∪ b1) ∩ (a0 ∪ b1)) = (b1 ∪ (a0 ∩ (b0 ∪ b1))) |
72 | 71 | lan 77 |
. . . . . . . . . 10
((a0 ∪ a1) ∩ ((b0 ∪ b1) ∩ (a0 ∪ b1))) = ((a0 ∪ a1) ∩ (b1 ∪ (a0 ∩ (b0 ∪ b1)))) |
73 | | leao1 162 |
. . . . . . . . . . 11
(a0 ∩ (b0 ∪ b1)) ≤ (a0 ∪ a1) |
74 | 73 | mldual2i 1127 |
. . . . . . . . . 10
((a0 ∪ a1) ∩ (b1 ∪ (a0 ∩ (b0 ∪ b1)))) = (((a0 ∪ a1) ∩ b1) ∪ (a0 ∩ (b0 ∪ b1))) |
75 | | orcom 73 |
. . . . . . . . . . 11
(((a0 ∪ a1) ∩ b1) ∪ (a0 ∩ (b0 ∪ b1))) = ((a0 ∩ (b0 ∪ b1)) ∪ ((a0 ∪ a1) ∩ b1)) |
76 | | ancom 74 |
. . . . . . . . . . . 12
((a0 ∪ a1) ∩ b1) = (b1 ∩ (a0 ∪ a1)) |
77 | 76 | lor 70 |
. . . . . . . . . . 11
((a0 ∩ (b0 ∪ b1)) ∪ ((a0 ∪ a1) ∩ b1)) = ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1))) |
78 | 75, 77 | tr 62 |
. . . . . . . . . 10
(((a0 ∪ a1) ∩ b1) ∪ (a0 ∩ (b0 ∪ b1))) = ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1))) |
79 | 72, 74, 78 | 3tr 65 |
. . . . . . . . 9
((a0 ∪ a1) ∩ ((b0 ∪ b1) ∩ (a0 ∪ b1))) = ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1))) |
80 | 64, 65, 79 | 3tr 65 |
. . . . . . . 8
(c2 ∩ (a0 ∪ b1)) = ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1))) |
81 | 80 | lor 70 |
. . . . . . 7
((c2 ∩ (c0 ∪ c1)) ∪ (c2 ∩ (a0 ∪ b1))) = ((c2 ∩ (c0 ∪ c1)) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |
82 | 63, 81 | tr 62 |
. . . . . 6
(c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) = ((c2 ∩ (c0 ∪ c1)) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |
83 | | lear 161 |
. . . . . . 7
(c2 ∩ (c0 ∪ c1)) ≤ (c0 ∪ c1) |
84 | 83 | leror 152 |
. . . . . 6
((c2 ∩ (c0 ∪ c1)) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) ≤ ((c0 ∪ c1) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |
85 | 82, 84 | bltr 138 |
. . . . 5
(c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) ≤ ((c0 ∪ c1) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |
86 | 62, 85 | letr 137 |
. . . 4
c2 ≤ ((c0 ∪ c1) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |
87 | | orcom 73 |
. . . . . . 7
((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1))) = ((b1 ∩ (a0 ∪ a1)) ∪ (a0 ∩ (b0 ∪ b1))) |
88 | 87 | lor 70 |
. . . . . 6
((c0 ∪ c1) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) = ((c0 ∪ c1) ∪ ((b1 ∩ (a0 ∪ a1)) ∪ (a0 ∩ (b0 ∪ b1)))) |
89 | | or4 84 |
. . . . . . 7
((c0 ∪ c1) ∪ ((b1 ∩ (a0 ∪ a1)) ∪ (a0 ∩ (b0 ∪ b1)))) = ((c0 ∪ (b1 ∩ (a0 ∪ a1))) ∪ (c1 ∪ (a0 ∩ (b0 ∪ b1)))) |
90 | | ancom 74 |
. . . . . . . . . 10
((a1 ∪ a2) ∩ (b1 ∪ b2)) = ((b1 ∪ b2) ∩ (a1 ∪ a2)) |
91 | 43, 90 | tr 62 |
. . . . . . . . 9
c0 = ((b1 ∪ b2) ∩ (a1 ∪ a2)) |
92 | 91 | ror 71 |
. . . . . . . 8
(c0 ∪ (b1 ∩ (a0 ∪ a1))) = (((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b1 ∩ (a0 ∪ a1))) |
93 | 44 | ror 71 |
. . . . . . . 8
(c1 ∪ (a0 ∩ (b0 ∪ b1))) = (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (a0 ∩ (b0 ∪ b1))) |
94 | 92, 93 | 2or 72 |
. . . . . . 7
((c0 ∪ (b1 ∩ (a0 ∪ a1))) ∪ (c1 ∪ (a0 ∩ (b0 ∪ b1)))) = ((((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b1 ∩ (a0 ∪ a1))) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (a0 ∩ (b0 ∪ b1)))) |
95 | 89, 94 | tr 62 |
. . . . . 6
((c0 ∪ c1) ∪ ((b1 ∩ (a0 ∪ a1)) ∪ (a0 ∩ (b0 ∪ b1)))) = ((((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b1 ∩ (a0 ∪ a1))) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (a0 ∩ (b0 ∪ b1)))) |
96 | | leao1 162 |
. . . . . . . 8
(b1 ∩ (a0 ∪ a1)) ≤ (b1 ∪ b2) |
97 | 96 | mli 1126 |
. . . . . . 7
(((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b1 ∩ (a0 ∪ a1))) = ((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) |
98 | | leao1 162 |
. . . . . . . 8
(a0 ∩ (b0 ∪ b1)) ≤ (a0 ∪ a2) |
99 | 98 | mli 1126 |
. . . . . . 7
(((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (a0 ∩ (b0 ∪ b1))) = ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1)))) |
100 | 97, 99 | 2or 72 |
. . . . . 6
((((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b1 ∩ (a0 ∪ a1))) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (a0 ∩ (b0 ∪ b1)))) = (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1))))) |
101 | 88, 95, 100 | 3tr 65 |
. . . . 5
((c0 ∪ c1) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) = (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1))))) |
102 | | or32 82 |
. . . . . . . 8
((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) = ((a1 ∪ (b1 ∩ (a0 ∪ a1))) ∪ a2) |
103 | | ml3 1130 |
. . . . . . . . . 10
(a1 ∪ (b1 ∩ (a0 ∪ a1))) = (a1 ∪ (a0 ∩ (b1 ∪ a1))) |
104 | | orcom 73 |
. . . . . . . . . . . 12
(b1 ∪ a1) = (a1 ∪ b1) |
105 | 104 | lan 77 |
. . . . . . . . . . 11
(a0 ∩ (b1 ∪ a1)) = (a0 ∩ (a1 ∪ b1)) |
106 | 105 | lor 70 |
. . . . . . . . . 10
(a1 ∪ (a0 ∩ (b1 ∪ a1))) = (a1 ∪ (a0 ∩ (a1 ∪ b1))) |
107 | 103, 106 | tr 62 |
. . . . . . . . 9
(a1 ∪ (b1 ∩ (a0 ∪ a1))) = (a1 ∪ (a0 ∩ (a1 ∪ b1))) |
108 | 107 | ror 71 |
. . . . . . . 8
((a1 ∪ (b1 ∩ (a0 ∪ a1))) ∪ a2) = ((a1 ∪ (a0 ∩ (a1 ∪ b1))) ∪ a2) |
109 | | or32 82 |
. . . . . . . 8
((a1 ∪ (a0 ∩ (a1 ∪ b1))) ∪ a2) = ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) |
110 | 102, 108,
109 | 3tr 65 |
. . . . . . 7
((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) = ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) |
111 | 110 | lan 77 |
. . . . . 6
((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) = ((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1)))) |
112 | | or32 82 |
. . . . . . . 8
((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1))) = ((b0 ∪ (a0 ∩ (b0 ∪ b1))) ∪ b2) |
113 | | orcom 73 |
. . . . . . . . . . . 12
(b0 ∪ b1) = (b1 ∪ b0) |
114 | 113 | lan 77 |
. . . . . . . . . . 11
(a0 ∩ (b0 ∪ b1)) = (a0 ∩ (b1 ∪ b0)) |
115 | 114 | lor 70 |
. . . . . . . . . 10
(b0 ∪ (a0 ∩ (b0 ∪ b1))) = (b0 ∪ (a0 ∩ (b1 ∪ b0))) |
116 | | ml3 1130 |
. . . . . . . . . 10
(b0 ∪ (a0 ∩ (b1 ∪ b0))) = (b0 ∪ (b1 ∩ (a0 ∪ b0))) |
117 | 115, 116 | tr 62 |
. . . . . . . . 9
(b0 ∪ (a0 ∩ (b0 ∪ b1))) = (b0 ∪ (b1 ∩ (a0 ∪ b0))) |
118 | 117 | ror 71 |
. . . . . . . 8
((b0 ∪ (a0 ∩ (b0 ∪ b1))) ∪ b2) = ((b0 ∪ (b1 ∩ (a0 ∪ b0))) ∪ b2) |
119 | | or32 82 |
. . . . . . . 8
((b0 ∪ (b1 ∩ (a0 ∪ b0))) ∪ b2) = ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))) |
120 | 112, 118,
119 | 3tr 65 |
. . . . . . 7
((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1))) = ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))) |
121 | 120 | lan 77 |
. . . . . 6
((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1)))) = ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0)))) |
122 | 111, 121 | 2or 72 |
. . . . 5
(((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1))))) = (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))))) |
123 | 101, 122 | tr 62 |
. . . 4
((c0 ∪ c1) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) = (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))))) |
124 | 86, 123 | lbtr 139 |
. . 3
c2 ≤ (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))))) |
125 | | lea 160 |
. . . . . . 7
(a0 ∩ (a1 ∪ b1)) ≤ a0 |
126 | 25 | leran 153 |
. . . . . . . 8
(a0 ∩ (a1 ∪ b1)) ≤ ((a0 ∪ b0) ∩ (a1 ∪ b1)) |
127 | 126, 37 | letr 137 |
. . . . . . 7
(a0 ∩ (a1 ∪ b1)) ≤ (a2 ∪ b2) |
128 | 125, 127 | ler2an 173 |
. . . . . 6
(a0 ∩ (a1 ∪ b1)) ≤ (a0 ∩ (a2 ∪ b2)) |
129 | 128 | lelor 166 |
. . . . 5
((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ≤ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2))) |
130 | 129 | lelan 167 |
. . . 4
((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1)))) ≤ ((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2)))) |
131 | | lea 160 |
. . . . . . 7
(b1 ∩ (a0 ∪ b0)) ≤ b1 |
132 | | lear 161 |
. . . . . . . . 9
(b1 ∩ (a0 ∪ b0)) ≤ (a0 ∪ b0) |
133 | | leao3 164 |
. . . . . . . . 9
(b1 ∩ (a0 ∪ b0)) ≤ (a1 ∪ b1) |
134 | 132, 133 | ler2an 173 |
. . . . . . . 8
(b1 ∩ (a0 ∪ b0)) ≤ ((a0 ∪ b0) ∩ (a1 ∪ b1)) |
135 | 134, 37 | letr 137 |
. . . . . . 7
(b1 ∩ (a0 ∪ b0)) ≤ (a2 ∪ b2) |
136 | 131, 135 | ler2an 173 |
. . . . . 6
(b1 ∩ (a0 ∪ b0)) ≤ (b1 ∩ (a2 ∪ b2)) |
137 | 136 | lelor 166 |
. . . . 5
((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))) ≤ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))) |
138 | 137 | lelan 167 |
. . . 4
((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0)))) ≤ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2)))) |
139 | 130, 138 | le2or 168 |
. . 3
(((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))))) ≤ (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))))) |
140 | 124, 139 | letr 137 |
. 2
c2 ≤ (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))))) |
141 | | ax-a2 31 |
. . . . . . . . . 10
(a2 ∪ b2) = (b2 ∪ a2) |
142 | 141 | lan 77 |
. . . . . . . . 9
(a0 ∩ (a2 ∪ b2)) = (a0 ∩ (b2 ∪ a2)) |
143 | 142 | lor 70 |
. . . . . . . 8
(a2 ∪ (a0 ∩ (a2 ∪ b2))) = (a2 ∪ (a0 ∩ (b2 ∪ a2))) |
144 | | ml3 1130 |
. . . . . . . 8
(a2 ∪ (a0 ∩ (b2 ∪ a2))) = (a2 ∪ (b2 ∩ (a0 ∪ a2))) |
145 | 143, 144 | tr 62 |
. . . . . . 7
(a2 ∪ (a0 ∩ (a2 ∪ b2))) = (a2 ∪ (b2 ∩ (a0 ∪ a2))) |
146 | 145 | lor 70 |
. . . . . 6
(a1 ∪ (a2 ∪ (a0 ∩ (a2 ∪ b2)))) = (a1 ∪ (a2 ∪ (b2 ∩ (a0 ∪ a2)))) |
147 | | orass 75 |
. . . . . 6
((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2))) = (a1 ∪ (a2 ∪ (a0 ∩ (a2 ∪ b2)))) |
148 | | orass 75 |
. . . . . 6
((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2))) = (a1 ∪ (a2 ∪ (b2 ∩ (a0 ∪ a2)))) |
149 | 146, 147,
148 | 3tr1 63 |
. . . . 5
((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2))) = ((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2))) |
150 | 149 | lan 77 |
. . . 4
((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2)))) = ((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2)))) |
151 | | ml3 1130 |
. . . . . . 7
(b2 ∪ (b1 ∩ (a2 ∪ b2))) = (b2 ∪ (a2 ∩ (b1 ∪ b2))) |
152 | 151 | lor 70 |
. . . . . 6
(b0 ∪ (b2 ∪ (b1 ∩ (a2 ∪ b2)))) = (b0 ∪ (b2 ∪ (a2 ∩ (b1 ∪ b2)))) |
153 | | orass 75 |
. . . . . 6
((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))) = (b0 ∪ (b2 ∪ (b1 ∩ (a2 ∪ b2)))) |
154 | | orass 75 |
. . . . . 6
((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2))) = (b0 ∪ (b2 ∪ (a2 ∩ (b1 ∪ b2)))) |
155 | 152, 153,
154 | 3tr1 63 |
. . . . 5
((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))) = ((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2))) |
156 | 155 | lan 77 |
. . . 4
((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2)))) = ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2)))) |
157 | 150, 156 | 2or 72 |
. . 3
(((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))))) = (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2))))) |
158 | | leao3 164 |
. . . . . 6
(b2 ∩ (a0 ∪ a2)) ≤ (b1 ∪ b2) |
159 | 158 | mldual2i 1127 |
. . . . 5
((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2)))) = (((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b2 ∩ (a0 ∪ a2))) |
160 | 91 | ror 71 |
. . . . . 6
(c0 ∪ (b2 ∩ (a0 ∪ a2))) = (((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b2 ∩ (a0 ∪ a2))) |
161 | 160 | cm 61 |
. . . . 5
(((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b2 ∩ (a0 ∪ a2))) = (c0 ∪ (b2 ∩ (a0 ∪ a2))) |
162 | 159, 161 | tr 62 |
. . . 4
((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2)))) = (c0 ∪ (b2 ∩ (a0 ∪ a2))) |
163 | | leao3 164 |
. . . . . 6
(a2 ∩ (b1 ∪ b2)) ≤ (a0 ∪ a2) |
164 | 163 | mldual2i 1127 |
. . . . 5
((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2)))) = (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (a2 ∩ (b1 ∪ b2))) |
165 | 44 | ror 71 |
. . . . . 6
(c1 ∪ (a2 ∩ (b1 ∪ b2))) = (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (a2 ∩ (b1 ∪ b2))) |
166 | 165 | cm 61 |
. . . . 5
(((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (a2 ∩ (b1 ∪ b2))) = (c1 ∪ (a2 ∩ (b1 ∪ b2))) |
167 | 164, 166 | tr 62 |
. . . 4
((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2)))) = (c1 ∪ (a2 ∩ (b1 ∪ b2))) |
168 | 162, 167 | 2or 72 |
. . 3
(((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2))))) = ((c0 ∪ (b2 ∩ (a0 ∪ a2))) ∪ (c1 ∪ (a2 ∩ (b1 ∪ b2)))) |
169 | | or4 84 |
. . . 4
((c0 ∪ (b2 ∩ (a0 ∪ a2))) ∪ (c1 ∪ (a2 ∩ (b1 ∪ b2)))) = ((c0 ∪ c1) ∪ ((b2 ∩ (a0 ∪ a2)) ∪ (a2 ∩ (b1 ∪ b2)))) |
170 | | orcom 73 |
. . . 4
((c0 ∪ c1) ∪ ((b2 ∩ (a0 ∪ a2)) ∪ (a2 ∩ (b1 ∪ b2)))) = (((b2 ∩ (a0 ∪ a2)) ∪ (a2 ∩ (b1 ∪ b2))) ∪ (c0 ∪ c1)) |
171 | | ancom 74 |
. . . . . . . 8
(b2 ∩ (a0 ∪ a2)) = ((a0 ∪ a2) ∩ b2) |
172 | | leor 159 |
. . . . . . . . 9
b2 ≤ (b0 ∪ b2) |
173 | 172 | lelan 167 |
. . . . . . . 8
((a0 ∪ a2) ∩ b2) ≤ ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
174 | 171, 173 | bltr 138 |
. . . . . . 7
(b2 ∩ (a0 ∪ a2)) ≤ ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
175 | | leor 159 |
. . . . . . . 8
a2 ≤ (a1 ∪ a2) |
176 | 175 | leran 153 |
. . . . . . 7
(a2 ∩ (b1 ∪ b2)) ≤ ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
177 | 174, 176 | le2or 168 |
. . . . . 6
((b2 ∩ (a0 ∪ a2)) ∪ (a2 ∩ (b1 ∪ b2))) ≤ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ ((a1 ∪ a2) ∩ (b1 ∪ b2))) |
178 | 44, 43 | 2or 72 |
. . . . . . . 8
(c1 ∪ c0) = (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ ((a1 ∪ a2) ∩ (b1 ∪ b2))) |
179 | 178 | cm 61 |
. . . . . . 7
(((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ ((a1 ∪ a2) ∩ (b1 ∪ b2))) = (c1 ∪ c0) |
180 | | orcom 73 |
. . . . . . 7
(c1 ∪ c0) = (c0 ∪ c1) |
181 | 179, 180 | tr 62 |
. . . . . 6
(((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ ((a1 ∪ a2) ∩ (b1 ∪ b2))) = (c0 ∪ c1) |
182 | 177, 181 | lbtr 139 |
. . . . 5
((b2 ∩ (a0 ∪ a2)) ∪ (a2 ∩ (b1 ∪ b2))) ≤ (c0 ∪ c1) |
183 | 182 | df-le2 131 |
. . . 4
(((b2 ∩ (a0 ∪ a2)) ∪ (a2 ∩ (b1 ∪ b2))) ∪ (c0 ∪ c1)) = (c0 ∪ c1) |
184 | 169, 170,
183 | 3tr 65 |
. . 3
((c0 ∪ (b2 ∩ (a0 ∪ a2))) ∪ (c1 ∪ (a2 ∩ (b1 ∪ b2)))) = (c0 ∪ c1) |
185 | 157, 168,
184 | 3tr 65 |
. 2
(((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))))) = (c0 ∪ c1) |
186 | 140, 185 | lbtr 139 |
1
c2 ≤ (c0 ∪ c1) |