Proof of Theorem 3dp43
Step | Hyp | Ref
| Expression |
1 | | leor 159 |
. 2
p ≤ (a0 ∪ p) |
2 | | leo 158 |
. . 3
a0 ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
3 | | 3dp.p |
. . . . . . . 8
p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a1 ∪ b1)) |
4 | | anass 76 |
. . . . . . . 8
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a1 ∪ b1)) = ((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a1 ∪ b1))) |
5 | 3, 4 | tr 62 |
. . . . . . 7
p = ((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a1 ∪ b1))) |
6 | | 3dp.p0 |
. . . . . . . . . . 11
p0 = ((a1 ∪ b1) ∩ (a1 ∪ b1)) |
7 | 6 | lan 77 |
. . . . . . . . . 10
((a0 ∪ b0) ∩ p0) = ((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a1 ∪ b1))) |
8 | 7 | cm 61 |
. . . . . . . . 9
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a1 ∪ b1))) = ((a0 ∪ b0) ∩ p0) |
9 | | leao4 165 |
. . . . . . . . 9
((a0 ∪ b0) ∩ p0) ≤ (a0 ∪ p0) |
10 | 8, 9 | bltr 138 |
. . . . . . . 8
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a1 ∪ b1))) ≤ (a0 ∪ p0) |
11 | | lea 160 |
. . . . . . . . 9
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a1 ∪ b1))) ≤ (a0 ∪ b0) |
12 | | orcom 73 |
. . . . . . . . 9
(a0 ∪ b0) = (b0 ∪ a0) |
13 | 11, 12 | lbtr 139 |
. . . . . . . 8
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a1 ∪ b1))) ≤ (b0 ∪ a0) |
14 | 10, 13 | ler2an 173 |
. . . . . . 7
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a1 ∪ b1))) ≤ ((a0 ∪ p0) ∩ (b0 ∪ a0)) |
15 | 5, 14 | bltr 138 |
. . . . . 6
p ≤ ((a0 ∪ p0) ∩ (b0 ∪ a0)) |
16 | | leo 158 |
. . . . . . . 8
a0 ≤ (a0 ∪ p0) |
17 | 16 | mldual2i 1127 |
. . . . . . 7
((a0 ∪ p0) ∩ (b0 ∪ a0)) = (((a0 ∪ p0) ∩ b0) ∪ a0) |
18 | | ancom 74 |
. . . . . . . 8
((a0 ∪ p0) ∩ b0) = (b0 ∩ (a0 ∪ p0)) |
19 | 18 | ror 71 |
. . . . . . 7
(((a0 ∪ p0) ∩ b0) ∪ a0) = ((b0 ∩ (a0 ∪ p0)) ∪ a0) |
20 | 17, 19 | tr 62 |
. . . . . 6
((a0 ∪ p0) ∩ (b0 ∪ a0)) = ((b0 ∩ (a0 ∪ p0)) ∪ a0) |
21 | 15, 20 | lbtr 139 |
. . . . 5
p ≤ ((b0 ∩ (a0 ∪ p0)) ∪ a0) |
22 | 2 | lelor 166 |
. . . . 5
((b0 ∩ (a0 ∪ p0)) ∪ a0) ≤ ((b0 ∩ (a0 ∪ p0)) ∪ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))))) |
23 | 21, 22 | letr 137 |
. . . 4
p ≤ ((b0 ∩ (a0 ∪ p0)) ∪ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))))) |
24 | | lea 160 |
. . . . . . . 8
(b0 ∩ (a0 ∪ p0)) ≤ b0 |
25 | | leor 159 |
. . . . . . . . 9
(b0 ∩ (a0 ∪ p0)) ≤ (b1 ∪ (b0 ∩ (a0 ∪ p0))) |
26 | | leo 158 |
. . . . . . . . . 10
b1 ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
27 | | leo 158 |
. . . . . . . . . . . . . 14
(b0 ∩ (a0 ∪ p0)) ≤ ((b0 ∩ (a0 ∪ p0)) ∪ b1) |
28 | 6 | lor 70 |
. . . . . . . . . . . . . . . 16
(a0 ∪ p0) = (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))) |
29 | 28 | lan 77 |
. . . . . . . . . . . . . . 15
(b0 ∩ (a0 ∪ p0)) = (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1)))) |
30 | | lear 161 |
. . . . . . . . . . . . . . . 16
(b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1)))) ≤ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))) |
31 | | lea 160 |
. . . . . . . . . . . . . . . . . 18
((a1 ∪ b1) ∩ (a1 ∪ b1)) ≤ (a1 ∪ b1) |
32 | 31 | lelor 166 |
. . . . . . . . . . . . . . . . 17
(a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))) ≤ (a0 ∪ (a1 ∪ b1)) |
33 | | ax-a3 32 |
. . . . . . . . . . . . . . . . . 18
((a0 ∪ a1) ∪ b1) = (a0 ∪ (a1 ∪ b1)) |
34 | 33 | cm 61 |
. . . . . . . . . . . . . . . . 17
(a0 ∪ (a1 ∪ b1)) = ((a0 ∪ a1) ∪ b1) |
35 | 32, 34 | lbtr 139 |
. . . . . . . . . . . . . . . 16
(a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))) ≤ ((a0 ∪ a1) ∪ b1) |
36 | 30, 35 | letr 137 |
. . . . . . . . . . . . . . 15
(b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1)))) ≤ ((a0 ∪ a1) ∪ b1) |
37 | 29, 36 | bltr 138 |
. . . . . . . . . . . . . 14
(b0 ∩ (a0 ∪ p0)) ≤ ((a0 ∪ a1) ∪ b1) |
38 | 27, 37 | ler2an 173 |
. . . . . . . . . . . . 13
(b0 ∩ (a0 ∪ p0)) ≤ (((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) |
39 | | leor 159 |
. . . . . . . . . . . . . . 15
b1 ≤ ((b0 ∩ (a0 ∪ p0)) ∪ b1) |
40 | 39 | mldual2i 1127 |
. . . . . . . . . . . . . 14
(((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) = ((((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ (a0 ∪ a1)) ∪ b1) |
41 | | ancom 74 |
. . . . . . . . . . . . . . 15
(((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ (a0 ∪ a1)) = ((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) |
42 | 41 | ror 71 |
. . . . . . . . . . . . . 14
((((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ (a0 ∪ a1)) ∪ b1) = (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ b1) |
43 | 40, 42 | tr 62 |
. . . . . . . . . . . . 13
(((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) = (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ b1) |
44 | 38, 43 | lbtr 139 |
. . . . . . . . . . . 12
(b0 ∩ (a0 ∪ p0)) ≤ (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ b1) |
45 | 26 | lelor 166 |
. . . . . . . . . . . 12
(((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ b1) ≤ (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
46 | 44, 45 | letr 137 |
. . . . . . . . . . 11
(b0 ∩ (a0 ∪ p0)) ≤ (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
47 | | lea 160 |
. . . . . . . . . . . . . . . 16
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (a0 ∪ a1) |
48 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
(a0 ∪ a1) = (a1 ∪ a0) |
49 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
(e ∪ b1) = (b1 ∪ e) |
50 | 48, 49 | 2an 79 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
((a0 ∪ a1) ∩ (e ∪ b1)) = ((a1 ∪ a0) ∩ (b1 ∪ e)) |
51 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
((a1 ∪ a0) ∩ (b1 ∪ e)) = ((b1 ∪ e) ∩ (a1 ∪ a0)) |
52 | 50, 51 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
((a0 ∪ a1) ∩ (e ∪ b1)) = ((b1 ∪ e) ∩ (a1 ∪ a0)) |
53 | | leor 159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
b1 ≤ (a1 ∪ b1) |
54 | 53 | leror 152 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
(b1 ∪ e) ≤ ((a1 ∪ b1) ∪ e) |
55 | | leo 158 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
(a1 ∪ a0) ≤ ((a1 ∪ a0) ∪ e) |
56 | 54, 55 | le2an 169 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
((b1 ∪ e) ∩ (a1 ∪ a0)) ≤ (((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e)) |
57 | 52, 56 | bltr 138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e)) |
58 | 57 | df2le2 136 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e))) = ((a0 ∪ a1) ∩ (e ∪ b1)) |
59 | 58 | cm 61 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
((a0 ∪ a1) ∩ (e ∪ b1)) = (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e))) |
60 | | anass 76 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ b1) ∪ e)) ∩ ((a1 ∪ a0) ∪ e)) = (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e))) |
61 | 60 | cm 61 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e))) = ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ b1) ∪ e)) ∩ ((a1 ∪ a0) ∪ e)) |
62 | 59, 61 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
((a0 ∪ a1) ∩ (e ∪ b1)) = ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ b1) ∪ e)) ∩ ((a1 ∪ a0) ∪ e)) |
63 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
(a1 ∪ a0) = (a0 ∪ a1) |
64 | 63 | ror 71 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
((a1 ∪ a0) ∪ e) = ((a0 ∪ a1) ∪ e) |
65 | | or32 82 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
((a0 ∪ a1) ∪ e) = ((a0 ∪ e) ∪ a1) |
66 | 64, 65 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
((a1 ∪ a0) ∪ e) = ((a0 ∪ e) ∪ a1) |
67 | 66 | lan 77 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
(((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e)) = (((a1 ∪ b1) ∪ e) ∩ ((a0 ∪ e) ∪ a1)) |
68 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
(((a1 ∪ b1) ∪ e) ∩ ((a0 ∪ e) ∪ a1)) = (((a0 ∪ e) ∪ a1) ∩ ((a1 ∪ b1) ∪ e)) |
69 | 67, 68 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
(((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e)) = (((a0 ∪ e) ∪ a1) ∩ ((a1 ∪ b1) ∪ e)) |
70 | | leor 159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
e ≤ (a0 ∪ e) |
71 | 70 | ler 149 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
e ≤ ((a0 ∪ e) ∪ a1) |
72 | 71 | mldual2i 1127 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
(((a0 ∪ e) ∪ a1) ∩ ((a1 ∪ b1) ∪ e)) = ((((a0 ∪ e) ∪ a1) ∩ (a1 ∪ b1)) ∪ e) |
73 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
(((a0 ∪ e) ∪ a1) ∩ (a1 ∪ b1)) = ((a1 ∪ b1) ∩ ((a0 ∪ e) ∪ a1)) |
74 | | leo 158 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
a1 ≤ (a1 ∪ b1) |
75 | 74 | mldual2i 1127 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
((a1 ∪ b1) ∩ ((a0 ∪ e) ∪ a1)) = (((a1 ∪ b1) ∩ (a0 ∪ e)) ∪ a1) |
76 | 73, 75 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
(((a0 ∪ e) ∪ a1) ∩ (a1 ∪ b1)) = (((a1 ∪ b1) ∩ (a0 ∪ e)) ∪ a1) |
77 | 76 | ror 71 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
((((a0 ∪ e) ∪ a1) ∩ (a1 ∪ b1)) ∪ e) = ((((a1 ∪ b1) ∩ (a0 ∪ e)) ∪ a1) ∪ e) |
78 | 69, 72, 77 | 3tr 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
(((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e)) = ((((a1 ∪ b1) ∩ (a0 ∪ e)) ∪ a1) ∪ e) |
79 | | orass 75 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
((((a1 ∪ b1) ∩ (a0 ∪ e)) ∪ a1) ∪ e) = (((a1 ∪ b1) ∩ (a0 ∪ e)) ∪ (a1 ∪ e)) |
80 | | orcom 73 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
(((a1 ∪ b1) ∩ (a0 ∪ e)) ∪ (a1 ∪ e)) = ((a1 ∪ e) ∪ ((a1 ∪ b1) ∩ (a0 ∪ e))) |
81 | 78, 79, 80 | 3tr 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
(((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e)) = ((a1 ∪ e) ∪ ((a1 ∪ b1) ∩ (a0 ∪ e))) |
82 | | leo 158 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
(a1 ∪ e) ≤ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))))) |
83 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
((a0 ∪ e) ∩ (a1 ∪ b1)) = ((a1 ∪ b1) ∩ (a0 ∪ e)) |
84 | 83 | cm 61 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
((a1 ∪ b1) ∩ (a0 ∪ e)) = ((a0 ∪ e) ∩ (a1 ∪ b1)) |
85 | | 3dp.e |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
e = (b0 ∩ (a0 ∪ p0)) |
86 | 85, 29 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
e = (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1)))) |
87 | 86 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
(a0 ∪ e) = (a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))))) |
88 | 87 | ran 78 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
((a0 ∪ e) ∩ (a1 ∪ b1)) = ((a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))))) ∩ (a1 ∪ b1)) |
89 | | le1 146 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
b0 ≤
1 |
90 | 89 | leran 153 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
(b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1)))) ≤ (1 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1)))) |
91 | 90 | lelor 166 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
(a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))))) ≤ (a0 ∪ (1 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))))) |
92 | 91 | leran 153 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
((a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))))) ∩ (a1 ∪ b1)) ≤ ((a0 ∪ (1 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))))) ∩ (a1 ∪ b1)) |
93 | | an1r 107 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
(1 ∩ (a0 ∪
((a1 ∪ b1) ∩ (a1 ∪ b1)))) = (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))) |
94 | 93 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
(a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))))) = (a0 ∪ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1)))) |
95 | | orass 75 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
((a0 ∪ a0) ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))) = (a0 ∪ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1)))) |
96 | 95 | cm 61 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
(a0 ∪ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1)))) = ((a0 ∪ a0) ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))) |
97 | | oridm 110 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
(a0 ∪ a0) = a0 |
98 | 97 | ror 71 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
((a0 ∪ a0) ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))) = (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))) |
99 | | orcom 73 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
(a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))) = (((a1 ∪ b1) ∩ (a1 ∪ b1)) ∪ a0) |
100 | 98, 99 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
((a0 ∪ a0) ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))) = (((a1 ∪ b1) ∩ (a1 ∪ b1)) ∪ a0) |
101 | 94, 96, 100 | 3tr 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
(a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))))) = (((a1 ∪ b1) ∩ (a1 ∪ b1)) ∪ a0) |
102 | 101 | ran 78 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
((a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))))) ∩ (a1 ∪ b1)) = ((((a1 ∪ b1) ∩ (a1 ∪ b1)) ∪ a0) ∩ (a1 ∪ b1)) |
103 | 31 | mlduali 1128 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
((((a1 ∪ b1) ∩ (a1 ∪ b1)) ∪ a0) ∩ (a1 ∪ b1)) = (((a1 ∪ b1) ∩ (a1 ∪ b1)) ∪ (a0 ∩ (a1 ∪ b1))) |
104 | 102, 103 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
((a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))))) ∩ (a1 ∪ b1)) = (((a1 ∪ b1) ∩ (a1 ∪ b1)) ∪ (a0 ∩ (a1 ∪ b1))) |
105 | | lear 161 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
((a1 ∪ b1) ∩ (a1 ∪ b1)) ≤ (a1 ∪ b1) |
106 | 105 | leror 152 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
(((a1 ∪ b1) ∩ (a1 ∪ b1)) ∪ (a0 ∩ (a1 ∪ b1))) ≤ ((a1 ∪ b1) ∪ (a0 ∩ (a1 ∪ b1))) |
107 | 104, 106 | bltr 138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
((a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))))) ∩ (a1 ∪ b1)) ≤ ((a1 ∪ b1) ∪ (a0 ∩ (a1 ∪ b1))) |
108 | | or32 82 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
((a1 ∪ b1) ∪ (a0 ∩ (a1 ∪ b1))) = ((a1 ∪ (a0 ∩ (a1 ∪ b1))) ∪ b1) |
109 | | 3dp.d |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
d = (a1 ∪ (a0 ∩ (a1 ∪ b1))) |
110 | 109 | ror 71 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
(d ∪ b1) = ((a1 ∪ (a0 ∩ (a1 ∪ b1))) ∪ b1) |
111 | 110 | cm 61 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
((a1 ∪ (a0 ∩ (a1 ∪ b1))) ∪ b1) = (d ∪ b1) |
112 | 108, 111 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
((a1 ∪ b1) ∪ (a0 ∩ (a1 ∪ b1))) = (d ∪ b1) |
113 | 107, 112 | lbtr 139 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
((a0 ∪ (1 ∩
(a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))))) ∩ (a1 ∪ b1)) ≤ (d ∪ b1) |
114 | 92, 113 | letr 137 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
((a0 ∪ (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a1 ∪ b1))))) ∩ (a1 ∪ b1)) ≤ (d ∪ b1) |
115 | 88, 114 | bltr 138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
((a0 ∪ e) ∩ (a1 ∪ b1)) ≤ (d ∪ b1) |
116 | 84, 115 | bltr 138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
((a1 ∪ b1) ∩ (a0 ∪ e)) ≤ (d
∪ b1) |
117 | 116 | df2le2 136 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
(((a1 ∪ b1) ∩ (a0 ∪ e)) ∩ (d
∪ b1)) = ((a1 ∪ b1) ∩ (a0 ∪ e)) |
118 | 117 | cm 61 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
((a1 ∪ b1) ∩ (a0 ∪ e)) = (((a1 ∪ b1) ∩ (a0 ∪ e)) ∩ (d
∪ b1)) |
119 | | id 59 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
(((a1 ∪ b1) ∩ (a0 ∪ e)) ∩ (d
∪ b1)) = (((a1 ∪ b1) ∩ (a0 ∪ e)) ∩ (d
∪ b1)) |
120 | 119 | cm 61 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
(((a1 ∪ b1) ∩ (a0 ∪ e)) ∩ (d
∪ b1)) = (((a1 ∪ b1) ∩ (a0 ∪ e)) ∩ (d
∪ b1)) |
121 | 118, 120 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
((a1 ∪ b1) ∩ (a0 ∪ e)) = (((a1 ∪ b1) ∩ (a0 ∪ e)) ∩ (d
∪ b1)) |
122 | | id 59 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
((a0 ∪ d) ∩ (e
∪ b1)) = ((a0 ∪ d) ∩ (e
∪ b1)) |
123 | | id 59 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
((a1 ∪ d) ∩ (b1 ∪ b1)) = ((a1 ∪ d) ∩ (b1 ∪ b1)) |
124 | | orcom 73 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
(a0 ∪ a1) = (a1 ∪ a0) |
125 | | orcom 73 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
(e ∪ b1) = (b1 ∪ e) |
126 | 124, 125 | 2an 79 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
((a0 ∪ a1) ∩ (e ∪ b1)) = ((a1 ∪ a0) ∩ (b1 ∪ e)) |
127 | 122, 123,
126, 119 | dp34 1181 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
(((a1 ∪ b1) ∩ (a0 ∪ e)) ∩ (d
∪ b1)) ≤ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))))) |
128 | 121, 127 | bltr 138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
((a1 ∪ b1) ∩ (a0 ∪ e)) ≤ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))))) |
129 | 82, 128 | lel2or 170 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
((a1 ∪ e) ∪ ((a1 ∪ b1) ∩ (a0 ∪ e))) ≤ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))))) |
130 | 81, 129 | bltr 138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
(((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e)) ≤ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))))) |
131 | 130 | lelan 167 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a1 ∪ b1) ∪ e) ∩ ((a1 ∪ a0) ∪ e))) ≤ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))))) |
132 | 60, 131 | bltr 138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ b1) ∪ e)) ∩ ((a1 ∪ a0) ∪ e)) ≤ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))))) |
133 | 62, 132 | bltr 138 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))))) |
134 | | mldual 1124 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))))) = ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))))) |
135 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))) = ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∩ ((a0 ∪ a1) ∩ (e ∪ b1))) |
136 | 135 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))))) = ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∩ ((a0 ∪ a1) ∩ (e ∪ b1)))) |
137 | | lea 160 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ≤ ((a0 ∪ a1) ∩ (e ∪ b1)) |
138 | 137 | ml2i 1125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∩ ((a0 ∪ a1) ∩ (e ∪ b1)))) = (((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))) ∩ ((a0 ∪ a1) ∩ (e ∪ b1))) |
139 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))) ∩ ((a0 ∪ a1) ∩ (e ∪ b1))) = (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))))) |
140 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))) = ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e))) |
141 | 140 | lan 77 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))))) = (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)))) |
142 | 138, 139,
141 | 3tr 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) ∪ ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∩ ((a0 ∪ a1) ∩ (e ∪ b1)))) = (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)))) |
143 | 134, 136,
142 | 3tr 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((a1 ∪ e) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))))) = (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)))) |
144 | 133, 143 | lbtr 139 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)))) |
145 | | mldual 1124 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)))) = ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e))) |
146 | 50 | ran 78 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) = (((a1 ∪ a0) ∩ (b1 ∪ e)) ∩ (a1 ∪ e)) |
147 | | anass 76 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
(((a1 ∪ a0) ∩ (b1 ∪ e)) ∩ (a1 ∪ e)) = ((a1 ∪ a0) ∩ ((b1 ∪ e) ∩ (a1 ∪ e))) |
148 | | leor 159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
e ≤ (b1 ∪ e) |
149 | 148 | mldual2i 1127 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
((b1 ∪ e) ∩ (a1 ∪ e)) = (((b1 ∪ e) ∩ a1) ∪ e) |
150 | | orcom 73 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
(((b1 ∪ e) ∩ a1) ∪ e) = (e ∪
((b1 ∪ e) ∩ a1)) |
151 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
((b1 ∪ e) ∩ a1) = (a1 ∩ (b1 ∪ e)) |
152 | 151 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
(e ∪ ((b1 ∪ e) ∩ a1)) = (e ∪ (a1 ∩ (b1 ∪ e))) |
153 | 149, 150,
152 | 3tr 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
((b1 ∪ e) ∩ (a1 ∪ e)) = (e ∪
(a1 ∩ (b1 ∪ e))) |
154 | 153 | lan 77 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
((a1 ∪ a0) ∩ ((b1 ∪ e) ∩ (a1 ∪ e))) = ((a1 ∪ a0) ∩ (e ∪ (a1 ∩ (b1 ∪ e)))) |
155 | | leao1 162 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
(a1 ∩ (b1 ∪ e)) ≤ (a1 ∪ a0) |
156 | 155 | mldual2i 1127 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
((a1 ∪ a0) ∩ (e ∪ (a1 ∩ (b1 ∪ e)))) = (((a1 ∪ a0) ∩ e) ∪ (a1 ∩ (b1 ∪ e))) |
157 | | orcom 73 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
(((a1 ∪ a0) ∩ e) ∪ (a1 ∩ (b1 ∪ e))) = ((a1 ∩ (b1 ∪ e)) ∪ ((a1 ∪ a0) ∩ e)) |
158 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
((a1 ∪ a0) ∩ e) = (e ∩
(a1 ∪ a0)) |
159 | 158 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
((a1 ∩ (b1 ∪ e)) ∪ ((a1 ∪ a0) ∩ e)) = ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0))) |
160 | 157, 159 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
(((a1 ∪ a0) ∩ e) ∪ (a1 ∩ (b1 ∪ e))) = ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0))) |
161 | 154, 156,
160 | 3tr 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
((a1 ∪ a0) ∩ ((b1 ∪ e) ∩ (a1 ∪ e))) = ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0))) |
162 | 146, 147,
161 | 3tr 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)) = ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0))) |
163 | 162 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e))) = ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) |
164 | 145, 163 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)))) = ((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) |
165 | | lear 161 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))) ≤ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) |
166 | 165 | leror 152 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) ≤ ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) |
167 | 164, 166 | bltr 138 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
(((a0 ∪ a1) ∩ (e ∪ b1)) ∩ ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ (((a0 ∪ a1) ∩ (e ∪ b1)) ∩ (a1 ∪ e)))) ≤ ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) |
168 | 144, 167 | letr 137 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((a0 ∪ a1) ∩ (e ∪ b1)) ≤ ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) |
169 | | orcom 73 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0))) = ((e ∩ (a1 ∪ a0)) ∪ (a1 ∩ (b1 ∪ e))) |
170 | 169 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) = ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ ((e ∩ (a1 ∪ a0)) ∪ (a1 ∩ (b1 ∪ e)))) |
171 | | or4 84 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ ((e ∩ (a1 ∪ a0)) ∪ (a1 ∩ (b1 ∪ e)))) = ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ (e ∩ (a1 ∪ a0))) ∪ (((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (a1 ∩ (b1 ∪ e)))) |
172 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
((a0 ∪ d) ∩ (e
∪ b1)) = ((e ∪ b1) ∩ (a0 ∪ d)) |
173 | 122, 172 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
((a0 ∪ d) ∩ (e
∪ b1)) = ((e ∪ b1) ∩ (a0 ∪ d)) |
174 | 173 | ror 71 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(((a0 ∪ d) ∩ (e
∪ b1)) ∪ (e ∩ (a1 ∪ a0))) = (((e ∪ b1) ∩ (a0 ∪ d)) ∪ (e
∩ (a1 ∪ a0))) |
175 | 123 | ror 71 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (a1 ∩ (b1 ∪ e))) = (((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (a1 ∩ (b1 ∪ e))) |
176 | 174, 175 | 2or 72 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
((((a0 ∪ d) ∩ (e
∪ b1)) ∪ (e ∩ (a1 ∪ a0))) ∪ (((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (a1 ∩ (b1 ∪ e)))) = ((((e
∪ b1) ∩ (a0 ∪ d)) ∪ (e
∩ (a1 ∪ a0))) ∪ (((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (a1 ∩ (b1 ∪ e)))) |
177 | 171, 176 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ ((e ∩ (a1 ∪ a0)) ∪ (a1 ∩ (b1 ∪ e)))) = ((((e
∪ b1) ∩ (a0 ∪ d)) ∪ (e
∩ (a1 ∪ a0))) ∪ (((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (a1 ∩ (b1 ∪ e)))) |
178 | | leao1 162 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(e ∩ (a1 ∪ a0)) ≤ (e ∪ b1) |
179 | 178 | mli 1126 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(((e ∪ b1) ∩ (a0 ∪ d)) ∪ (e
∩ (a1 ∪ a0))) = ((e ∪ b1) ∩ ((a0 ∪ d) ∪ (e
∩ (a1 ∪ a0)))) |
180 | | leao1 162 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(a1 ∩ (b1 ∪ e)) ≤ (a1 ∪ d) |
181 | 180 | mli 1126 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (a1 ∩ (b1 ∪ e))) = ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (a1 ∩ (b1 ∪ e)))) |
182 | 179, 181 | 2or 72 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((((e ∪ b1) ∩ (a0 ∪ d)) ∪ (e
∩ (a1 ∪ a0))) ∪ (((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (a1 ∩ (b1 ∪ e)))) = (((e
∪ b1) ∩ ((a0 ∪ d) ∪ (e
∩ (a1 ∪ a0)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (a1 ∩ (b1 ∪ e))))) |
183 | 170, 177,
182 | 3tr 65 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) = (((e ∪ b1) ∩ ((a0 ∪ d) ∪ (e
∩ (a1 ∪ a0)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (a1 ∩ (b1 ∪ e))))) |
184 | | or32 82 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
((a0 ∪ d) ∪ (e
∩ (a1 ∪ a0))) = ((a0 ∪ (e ∩ (a1 ∪ a0))) ∪ d) |
185 | | ml3 1130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
(a0 ∪ (e ∩ (a1 ∪ a0))) = (a0 ∪ (a1 ∩ (e ∪ a0))) |
186 | | orcom 73 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
(e ∪ a0) = (a0 ∪ e) |
187 | 186 | lan 77 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
(a1 ∩ (e ∪ a0)) = (a1 ∩ (a0 ∪ e)) |
188 | 187 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
(a0 ∪ (a1 ∩ (e ∪ a0))) = (a0 ∪ (a1 ∩ (a0 ∪ e))) |
189 | 185, 188 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
(a0 ∪ (e ∩ (a1 ∪ a0))) = (a0 ∪ (a1 ∩ (a0 ∪ e))) |
190 | 189 | ror 71 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
((a0 ∪ (e ∩ (a1 ∪ a0))) ∪ d) = ((a0 ∪ (a1 ∩ (a0 ∪ e))) ∪ d) |
191 | | or32 82 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
((a0 ∪ (a1 ∩ (a0 ∪ e))) ∪ d) =
((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e))) |
192 | 184, 190,
191 | 3tr 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
((a0 ∪ d) ∪ (e
∩ (a1 ∪ a0))) = ((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e))) |
193 | 192 | lan 77 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((e ∪ b1) ∩ ((a0 ∪ d) ∪ (e
∩ (a1 ∪ a0)))) = ((e ∪ b1) ∩ ((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e)))) |
194 | | or32 82 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
((b1 ∪ b1) ∪ (a1 ∩ (b1 ∪ e))) = ((b1 ∪ (a1 ∩ (b1 ∪ e))) ∪ b1) |
195 | | orcom 73 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
(b1 ∪ e) = (e ∪
b1) |
196 | 195 | lan 77 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
(a1 ∩ (b1 ∪ e)) = (a1 ∩ (e ∪ b1)) |
197 | 196 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
(b1 ∪ (a1 ∩ (b1 ∪ e))) = (b1 ∪ (a1 ∩ (e ∪ b1))) |
198 | | ml3 1130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
(b1 ∪ (a1 ∩ (e ∪ b1))) = (b1 ∪ (e ∩ (a1 ∪ b1))) |
199 | 197, 198 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
(b1 ∪ (a1 ∩ (b1 ∪ e))) = (b1 ∪ (e ∩ (a1 ∪ b1))) |
200 | 199 | ror 71 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
((b1 ∪ (a1 ∩ (b1 ∪ e))) ∪ b1) = ((b1 ∪ (e ∩ (a1 ∪ b1))) ∪ b1) |
201 | | or32 82 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
((b1 ∪ (e ∩ (a1 ∪ b1))) ∪ b1) = ((b1 ∪ b1) ∪ (e ∩ (a1 ∪ b1))) |
202 | 194, 200,
201 | 3tr 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
((b1 ∪ b1) ∪ (a1 ∩ (b1 ∪ e))) = ((b1 ∪ b1) ∪ (e ∩ (a1 ∪ b1))) |
203 | 202 | lan 77 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (a1 ∩ (b1 ∪ e)))) = ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (e ∩ (a1 ∪ b1)))) |
204 | 193, 203 | 2or 72 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
(((e ∪ b1) ∩ ((a0 ∪ d) ∪ (e
∩ (a1 ∪ a0)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (a1 ∩ (b1 ∪ e))))) = (((e
∪ b1) ∩ ((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (e ∩ (a1 ∪ b1))))) |
205 | 183, 204 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ ((a1 ∩ (b1 ∪ e)) ∪ (e
∩ (a1 ∪ a0)))) = (((e ∪ b1) ∩ ((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (e ∩ (a1 ∪ b1))))) |
206 | 168, 205 | lbtr 139 |
. . . . . . . . . . . . . . . . . . . . . . 23
((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((e ∪ b1) ∩ ((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (e ∩ (a1 ∪ b1))))) |
207 | | lea 160 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(a1 ∩ (a0 ∪ e)) ≤ a1 |
208 | 74 | leran 153 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(a1 ∩ (a0 ∪ e)) ≤ ((a1 ∪ b1) ∩ (a0 ∪ e)) |
209 | 208, 116 | letr 137 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(a1 ∩ (a0 ∪ e)) ≤ (d
∪ b1) |
210 | 207, 209 | ler2an 173 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(a1 ∩ (a0 ∪ e)) ≤ (a1 ∩ (d ∪ b1)) |
211 | 210 | lelor 166 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e))) ≤ ((a0 ∪ d) ∪ (a1 ∩ (d ∪ b1))) |
212 | 211 | lelan 167 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((e ∪ b1) ∩ ((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e)))) ≤ ((e
∪ b1) ∩ ((a0 ∪ d) ∪ (a1 ∩ (d ∪ b1)))) |
213 | | lea 160 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(e ∩ (a1 ∪ b1)) ≤ e |
214 | | lear 161 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
(e ∩ (a1 ∪ b1)) ≤ (a1 ∪ b1) |
215 | | leao3 164 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
(e ∩ (a1 ∪ b1)) ≤ (a0 ∪ e) |
216 | 214, 215 | ler2an 173 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(e ∩ (a1 ∪ b1)) ≤ ((a1 ∪ b1) ∩ (a0 ∪ e)) |
217 | 216, 116 | letr 137 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(e ∩ (a1 ∪ b1)) ≤ (d ∪ b1) |
218 | 213, 217 | ler2an 173 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(e ∩ (a1 ∪ b1)) ≤ (e ∩ (d ∪
b1)) |
219 | 218 | lelor 166 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
((b1 ∪ b1) ∪ (e ∩ (a1 ∪ b1))) ≤ ((b1 ∪ b1) ∪ (e ∩ (d ∪
b1))) |
220 | 219 | lelan 167 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (e ∩ (a1 ∪ b1)))) ≤ ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (e ∩ (d ∪
b1)))) |
221 | 212, 220 | le2or 168 |
. . . . . . . . . . . . . . . . . . . . . . 23
(((e ∪ b1) ∩ ((a0 ∪ d) ∪ (a1 ∩ (a0 ∪ e)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (e ∩ (a1 ∪ b1))))) ≤ (((e ∪ b1) ∩ ((a0 ∪ d) ∪ (a1 ∩ (d ∪ b1)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (e ∩ (d ∪
b1))))) |
222 | 206, 221 | letr 137 |
. . . . . . . . . . . . . . . . . . . . . 22
((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((e ∪ b1) ∩ ((a0 ∪ d) ∪ (a1 ∩ (d ∪ b1)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (e ∩ (d ∪
b1))))) |
223 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
(d ∪ b1) = (b1 ∪ d) |
224 | 223 | lan 77 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
(a1 ∩ (d ∪ b1)) = (a1 ∩ (b1 ∪ d)) |
225 | 224 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(d ∪ (a1 ∩ (d ∪ b1))) = (d ∪ (a1 ∩ (b1 ∪ d))) |
226 | | ml3 1130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(d ∪ (a1 ∩ (b1 ∪ d))) = (d ∪
(b1 ∩ (a1 ∪ d))) |
227 | 225, 226 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(d ∪ (a1 ∩ (d ∪ b1))) = (d ∪ (b1 ∩ (a1 ∪ d))) |
228 | 227 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(a0 ∪ (d ∪ (a1 ∩ (d ∪ b1)))) = (a0 ∪ (d ∪ (b1 ∩ (a1 ∪ d)))) |
229 | | orass 75 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((a0 ∪ d) ∪ (a1 ∩ (d ∪ b1))) = (a0 ∪ (d ∪ (a1 ∩ (d ∪ b1)))) |
230 | | orass 75 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((a0 ∪ d) ∪ (b1 ∩ (a1 ∪ d))) = (a0 ∪ (d ∪ (b1 ∩ (a1 ∪ d)))) |
231 | 228, 229,
230 | 3tr1 63 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
((a0 ∪ d) ∪ (a1 ∩ (d ∪ b1))) = ((a0 ∪ d) ∪ (b1 ∩ (a1 ∪ d))) |
232 | 231 | lan 77 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((e ∪ b1) ∩ ((a0 ∪ d) ∪ (a1 ∩ (d ∪ b1)))) = ((e ∪ b1) ∩ ((a0 ∪ d) ∪ (b1 ∩ (a1 ∪ d)))) |
233 | | ml3 1130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(b1 ∪ (e ∩ (d ∪
b1))) = (b1 ∪ (d ∩ (e ∪
b1))) |
234 | 233 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(b1 ∪ (b1 ∪ (e ∩ (d ∪
b1)))) = (b1 ∪ (b1 ∪ (d ∩ (e ∪
b1)))) |
235 | | orass 75 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((b1 ∪ b1) ∪ (e ∩ (d ∪
b1))) = (b1 ∪ (b1 ∪ (e ∩ (d ∪
b1)))) |
236 | | orass 75 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((b1 ∪ b1) ∪ (d ∩ (e ∪
b1))) = (b1 ∪ (b1 ∪ (d ∩ (e ∪
b1)))) |
237 | 234, 235,
236 | 3tr1 63 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
((b1 ∪ b1) ∪ (e ∩ (d ∪
b1))) = ((b1 ∪ b1) ∪ (d ∩ (e ∪
b1))) |
238 | 237 | lan 77 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (e ∩ (d ∪
b1)))) = ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (d ∩ (e ∪
b1)))) |
239 | 232, 238 | 2or 72 |
. . . . . . . . . . . . . . . . . . . . . . 23
(((e ∪ b1) ∩ ((a0 ∪ d) ∪ (a1 ∩ (d ∪ b1)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (e ∩ (d ∪
b1))))) = (((e ∪ b1) ∩ ((a0 ∪ d) ∪ (b1 ∩ (a1 ∪ d)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (d ∩ (e ∪
b1))))) |
240 | | leao3 164 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(b1 ∩ (a1 ∪ d)) ≤ (e
∪ b1) |
241 | 240 | mldual2i 1127 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
((e ∪ b1) ∩ ((a0 ∪ d) ∪ (b1 ∩ (a1 ∪ d)))) = (((e
∪ b1) ∩ (a0 ∪ d)) ∪ (b1 ∩ (a1 ∪ d))) |
242 | 173 | ror 71 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(((a0 ∪ d) ∩ (e
∪ b1)) ∪ (b1 ∩ (a1 ∪ d))) = (((e
∪ b1) ∩ (a0 ∪ d)) ∪ (b1 ∩ (a1 ∪ d))) |
243 | 242 | cm 61 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
(((e ∪ b1) ∩ (a0 ∪ d)) ∪ (b1 ∩ (a1 ∪ d))) = (((a0 ∪ d) ∩ (e
∪ b1)) ∪ (b1 ∩ (a1 ∪ d))) |
244 | 241, 243 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((e ∪ b1) ∩ ((a0 ∪ d) ∪ (b1 ∩ (a1 ∪ d)))) = (((a0 ∪ d) ∩ (e
∪ b1)) ∪ (b1 ∩ (a1 ∪ d))) |
245 | | leao3 164 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(d ∩ (e ∪ b1)) ≤ (a1 ∪ d) |
246 | 245 | mldual2i 1127 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (d ∩ (e ∪
b1)))) = (((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (d ∩ (e ∪
b1))) |
247 | 123 | ror 71 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (d ∩ (e ∪
b1))) = (((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (d ∩ (e ∪
b1))) |
248 | 247 | cm 61 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
(((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (d ∩ (e ∪
b1))) = (((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (d ∩ (e ∪
b1))) |
249 | 246, 248 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (d ∩ (e ∪
b1)))) = (((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (d ∩ (e ∪
b1))) |
250 | 244, 249 | 2or 72 |
. . . . . . . . . . . . . . . . . . . . . . 23
(((e ∪ b1) ∩ ((a0 ∪ d) ∪ (b1 ∩ (a1 ∪ d)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (d ∩ (e ∪
b1))))) = ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ (b1 ∩ (a1 ∪ d))) ∪ (((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (d ∩ (e ∪
b1)))) |
251 | | or4 84 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((((a0 ∪ d) ∩ (e
∪ b1)) ∪ (b1 ∩ (a1 ∪ d))) ∪ (((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (d ∩ (e ∪
b1)))) = ((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ ((b1 ∩ (a1 ∪ d)) ∪ (d
∩ (e ∪ b1)))) |
252 | | orcom 73 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) ∪ ((b1 ∩ (a1 ∪ d)) ∪ (d
∩ (e ∪ b1)))) = (((b1 ∩ (a1 ∪ d)) ∪ (d
∩ (e ∪ b1))) ∪ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))) |
253 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(b1 ∩ (a1 ∪ d)) = ((a1 ∪ d) ∩ b1) |
254 | | leor 159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
b1 ≤ (b1 ∪ b1) |
255 | 254 | lelan 167 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
((a1 ∪ d) ∩ b1) ≤ ((a1 ∪ d) ∩ (b1 ∪ b1)) |
256 | 253, 255 | bltr 138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(b1 ∩ (a1 ∪ d)) ≤ ((a1 ∪ d) ∩ (b1 ∪ b1)) |
257 | | leor 159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
d ≤ (a0 ∪ d) |
258 | 257 | leran 153 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(d ∩ (e ∪ b1)) ≤ ((a0 ∪ d) ∩ (e
∪ b1)) |
259 | 256, 258 | le2or 168 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((b1 ∩ (a1 ∪ d)) ∪ (d
∩ (e ∪ b1))) ≤ (((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ ((a0 ∪ d) ∩ (e
∪ b1))) |
260 | 123, 122 | 2or 72 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ ((a0 ∪ d) ∩ (e
∪ b1))) = (((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ ((a0 ∪ d) ∩ (e
∪ b1))) |
261 | 260 | cm 61 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ ((a0 ∪ d) ∩ (e
∪ b1))) = (((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ ((a0 ∪ d) ∩ (e
∪ b1))) |
262 | | orcom 73 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ ((a0 ∪ d) ∩ (e
∪ b1))) = (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) |
263 | 261, 262 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ ((a0 ∪ d) ∩ (e
∪ b1))) = (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) |
264 | 259, 263 | lbtr 139 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
((b1 ∩ (a1 ∪ d)) ∪ (d
∩ (e ∪ b1))) ≤ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) |
265 | 264 | df-le2 131 |
. . . . . . . . . . . . . . . . . . . . . . . 24
(((b1 ∩ (a1 ∪ d)) ∪ (d
∩ (e ∪ b1))) ∪ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1)))) = (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) |
266 | 251, 252,
265 | 3tr 65 |
. . . . . . . . . . . . . . . . . . . . . . 23
((((a0 ∪ d) ∩ (e
∪ b1)) ∪ (b1 ∩ (a1 ∪ d))) ∪ (((a1 ∪ d) ∩ (b1 ∪ b1)) ∪ (d ∩ (e ∪
b1)))) = (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) |
267 | 239, 250,
266 | 3tr 65 |
. . . . . . . . . . . . . . . . . . . . . 22
(((e ∪ b1) ∩ ((a0 ∪ d) ∪ (a1 ∩ (d ∪ b1)))) ∪ ((a1 ∪ d) ∩ ((b1 ∪ b1) ∪ (e ∩ (d ∪
b1))))) = (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) |
268 | 222, 267 | lbtr 139 |
. . . . . . . . . . . . . . . . . . . . 21
((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) |
269 | 85 | ror 71 |
. . . . . . . . . . . . . . . . . . . . . 22
(e ∪ b1) = ((b0 ∩ (a0 ∪ p0)) ∪ b1) |
270 | 269 | lan 77 |
. . . . . . . . . . . . . . . . . . . . 21
((a0 ∪ a1) ∩ (e ∪ b1)) = ((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) |
271 | 109 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . 23
(a0 ∪ d) = (a0 ∪ (a1 ∪ (a0 ∩ (a1 ∪ b1)))) |
272 | 271, 269 | 2an 79 |
. . . . . . . . . . . . . . . . . . . . . 22
((a0 ∪ d) ∩ (e
∪ b1)) = ((a0 ∪ (a1 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) |
273 | 109 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . 23
(a1 ∪ d) = (a1 ∪ (a1 ∪ (a0 ∩ (a1 ∪ b1)))) |
274 | 273 | ran 78 |
. . . . . . . . . . . . . . . . . . . . . 22
((a1 ∪ d) ∩ (b1 ∪ b1)) = ((a1 ∪ (a1 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b1)) |
275 | 272, 274 | 2or 72 |
. . . . . . . . . . . . . . . . . . . . 21
(((a0 ∪ d) ∩ (e
∪ b1)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b1))) = (((a0 ∪ (a1 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ ((a1 ∪ (a1 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b1))) |
276 | 268, 270,
275 | le3tr2 141 |
. . . . . . . . . . . . . . . . . . . 20
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ (a1 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ ((a1 ∪ (a1 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b1))) |
277 | | or12 80 |
. . . . . . . . . . . . . . . . . . . . . . 23
(a0 ∪ (a1 ∪ (a0 ∩ (a1 ∪ b1)))) = (a1 ∪ (a0 ∪ (a0 ∩ (a1 ∪ b1)))) |
278 | | orabs 120 |
. . . . . . . . . . . . . . . . . . . . . . . 24
(a0 ∪ (a0 ∩ (a1 ∪ b1))) = a0 |
279 | 278 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . 23
(a1 ∪ (a0 ∪ (a0 ∩ (a1 ∪ b1)))) = (a1 ∪ a0) |
280 | | orcom 73 |
. . . . . . . . . . . . . . . . . . . . . . 23
(a1 ∪ a0) = (a0 ∪ a1) |
281 | 277, 279,
280 | 3tr 65 |
. . . . . . . . . . . . . . . . . . . . . 22
(a0 ∪ (a1 ∪ (a0 ∩ (a1 ∪ b1)))) = (a0 ∪ a1) |
282 | 281 | ran 78 |
. . . . . . . . . . . . . . . . . . . . 21
((a0 ∪ (a1 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) = ((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) |
283 | | orass 75 |
. . . . . . . . . . . . . . . . . . . . . . 23
((a1 ∪ a1) ∪ (a0 ∩ (a1 ∪ b1))) = (a1 ∪ (a1 ∪ (a0 ∩ (a1 ∪ b1)))) |
284 | 283 | ran 78 |
. . . . . . . . . . . . . . . . . . . . . 22
(((a1 ∪ a1) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b1)) = ((a1 ∪ (a1 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b1)) |
285 | 284 | cm 61 |
. . . . . . . . . . . . . . . . . . . . 21
((a1 ∪ (a1 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b1)) = (((a1 ∪ a1) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b1)) |
286 | 282, 285 | 2or 72 |
. . . . . . . . . . . . . . . . . . . 20
(((a0 ∪ (a1 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ ((a1 ∪ (a1 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b1))) = (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ (((a1 ∪ a1) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b1))) |
287 | 276, 286 | lbtr 139 |
. . . . . . . . . . . . . . . . . . 19
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ (((a1 ∪ a1) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b1))) |
288 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
(a1 ∪ a1) = (a1 ∪ a1) |
289 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(a1 ∪ b1) = (b1 ∪ a1) |
290 | 289 | lan 77 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
(a0 ∩ (a1 ∪ b1)) = (a0 ∩ (b1 ∪ a1)) |
291 | 288, 290 | 2or 72 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((a1 ∪ a1) ∪ (a0 ∩ (a1 ∪ b1))) = ((a1 ∪ a1) ∪ (a0 ∩ (b1 ∪ a1))) |
292 | | orass 75 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((a1 ∪ a1) ∪ (a0 ∩ (b1 ∪ a1))) = (a1 ∪ (a1 ∪ (a0 ∩ (b1 ∪ a1)))) |
293 | 291, 292 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . . 23
((a1 ∪ a1) ∪ (a0 ∩ (a1 ∪ b1))) = (a1 ∪ (a1 ∪ (a0 ∩ (b1 ∪ a1)))) |
294 | | ml3le 1129 |
. . . . . . . . . . . . . . . . . . . . . . . 24
(a1 ∪ (a0 ∩ (b1 ∪ a1))) ≤ (a1 ∪ (b1 ∩ (a0 ∪ a1))) |
295 | 294 | lelor 166 |
. . . . . . . . . . . . . . . . . . . . . . 23
(a1 ∪ (a1 ∪ (a0 ∩ (b1 ∪ a1)))) ≤ (a1 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) |
296 | 293, 295 | bltr 138 |
. . . . . . . . . . . . . . . . . . . . . 22
((a1 ∪ a1) ∪ (a0 ∩ (a1 ∪ b1))) ≤ (a1 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) |
297 | | orass 75 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((a1 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) = (a1 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) |
298 | 297 | cm 61 |
. . . . . . . . . . . . . . . . . . . . . . 23
(a1 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) = ((a1 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) |
299 | 288 | ror 71 |
. . . . . . . . . . . . . . . . . . . . . . 23
((a1 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) = ((a1 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) |
300 | 298, 299 | tr 62 |
. . . . . . . . . . . . . . . . . . . . . 22
(a1 ∪ (a1 ∪ (b1 ∩ (a0 ∪ a1)))) = ((a1 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) |
301 | 296, 300 | lbtr 139 |
. . . . . . . . . . . . . . . . . . . . 21
((a1 ∪ a1) ∪ (a0 ∩ (a1 ∪ b1))) ≤ ((a1 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) |
302 | 301 | leran 153 |
. . . . . . . . . . . . . . . . . . . 20
(((a1 ∪ a1) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b1)) ≤ (((a1 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b1)) |
303 | 302 | lelor 166 |
. . . . . . . . . . . . . . . . . . 19
(((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ (((a1 ∪ a1) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b1))) ≤ (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ (((a1 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b1))) |
304 | 287, 303 | letr 137 |
. . . . . . . . . . . . . . . . . 18
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ (((a1 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b1))) |
305 | 24 | leror 152 |
. . . . . . . . . . . . . . . . . . . . 21
((b0 ∩ (a0 ∪ p0)) ∪ b1) ≤ (b0 ∪ b1) |
306 | 305 | lelan 167 |
. . . . . . . . . . . . . . . . . . . 20
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
307 | | leao1 162 |
. . . . . . . . . . . . . . . . . . . . . . 23
(b1 ∩ (a0 ∪ a1)) ≤ (b1 ∪ b1) |
308 | 307 | mldual2i 1127 |
. . . . . . . . . . . . . . . . . . . . . 22
((b1 ∪ b1) ∩ ((a1 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1)))) = (((b1 ∪ b1) ∩ (a1 ∪ a1)) ∪ (b1 ∩ (a0 ∪ a1))) |
309 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . 22
((b1 ∪ b1) ∩ ((a1 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1)))) = (((a1 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b1)) |
310 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . . 23
((b1 ∪ b1) ∩ (a1 ∪ a1)) = ((a1 ∪ a1) ∩ (b1 ∪ b1)) |
311 | 310 | ror 71 |
. . . . . . . . . . . . . . . . . . . . . 22
(((b1 ∪ b1) ∩ (a1 ∪ a1)) ∪ (b1 ∩ (a0 ∪ a1))) = (((a1 ∪ a1) ∩ (b1 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1))) |
312 | 308, 309,
311 | 3tr2 64 |
. . . . . . . . . . . . . . . . . . . . 21
(((a1 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b1)) = (((a1 ∪ a1) ∩ (b1 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1))) |
313 | 312 | bile 142 |
. . . . . . . . . . . . . . . . . . . 20
(((a1 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b1)) ≤ (((a1 ∪ a1) ∩ (b1 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1))) |
314 | 306, 313 | le2or 168 |
. . . . . . . . . . . . . . . . . . 19
(((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ (((a1 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b1))) ≤ (((a0 ∪ a1) ∩ (b0 ∪ b1)) ∪ (((a1 ∪ a1) ∩ (b1 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |
315 | | or12 80 |
. . . . . . . . . . . . . . . . . . 19
(((a0 ∪ a1) ∩ (b0 ∪ b1)) ∪ (((a1 ∪ a1) ∩ (b1 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) = (((a1 ∪ a1) ∩ (b1 ∪ b1)) ∪ (((a0 ∪ a1) ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |
316 | 314, 315 | lbtr 139 |
. . . . . . . . . . . . . . . . . 18
(((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ (((a1 ∪ a1) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b1))) ≤ (((a1 ∪ a1) ∩ (b1 ∪ b1)) ∪ (((a0 ∪ a1) ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |
317 | 304, 316 | letr 137 |
. . . . . . . . . . . . . . . . 17
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a1 ∪ a1) ∩ (b1 ∪ b1)) ∪ (((a0 ∪ a1) ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |
318 | | 3dp.c0 |
. . . . . . . . . . . . . . . . . . . 20
c0 = ((a1 ∪ a1) ∩ (b1 ∪ b1)) |
319 | | 3dp.c1 |
. . . . . . . . . . . . . . . . . . . . 21
c1 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
320 | 319 | ror 71 |
. . . . . . . . . . . . . . . . . . . 20
(c1 ∪ (b1 ∩ (a0 ∪ a1))) = (((a0 ∪ a1) ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1))) |
321 | 318, 320 | 2or 72 |
. . . . . . . . . . . . . . . . . . 19
(c0 ∪ (c1 ∪ (b1 ∩ (a0 ∪ a1)))) = (((a1 ∪ a1) ∩ (b1 ∪ b1)) ∪ (((a0 ∪ a1) ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |
322 | 321 | cm 61 |
. . . . . . . . . . . . . . . . . 18
(((a1 ∪ a1) ∩ (b1 ∪ b1)) ∪ (((a0 ∪ a1) ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) = (c0 ∪ (c1 ∪ (b1 ∩ (a0 ∪ a1)))) |
323 | | orass 75 |
. . . . . . . . . . . . . . . . . . 19
((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) = (c0 ∪ (c1 ∪ (b1 ∩ (a0 ∪ a1)))) |
324 | 323 | cm 61 |
. . . . . . . . . . . . . . . . . 18
(c0 ∪ (c1 ∪ (b1 ∩ (a0 ∪ a1)))) = ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
325 | 322, 324 | tr 62 |
. . . . . . . . . . . . . . . . 17
(((a1 ∪ a1) ∩ (b1 ∪ b1)) ∪ (((a0 ∪ a1) ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) = ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
326 | 317, 325 | lbtr 139 |
. . . . . . . . . . . . . . . 16
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
327 | 47, 326 | ler2an 173 |
. . . . . . . . . . . . . . 15
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((a0 ∪ a1) ∩ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1)))) |
328 | | lear 161 |
. . . . . . . . . . . . . . . 16
(b1 ∩ (a0 ∪ a1)) ≤ (a0 ∪ a1) |
329 | 328 | mldual2i 1127 |
. . . . . . . . . . . . . . 15
((a0 ∪ a1) ∩ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1)))) = (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ (b1 ∩ (a0 ∪ a1))) |
330 | 327, 329 | lbtr 139 |
. . . . . . . . . . . . . 14
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ (b1 ∩ (a0 ∪ a1))) |
331 | | lea 160 |
. . . . . . . . . . . . . . 15
(b1 ∩ (a0 ∪ a1)) ≤ b1 |
332 | 331 | lelor 166 |
. . . . . . . . . . . . . 14
(((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ (b1 ∩ (a0 ∪ a1))) ≤ (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ b1) |
333 | 330, 332 | letr 137 |
. . . . . . . . . . . . 13
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ b1) |
334 | | orcom 73 |
. . . . . . . . . . . . 13
(((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ b1) = (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
335 | 333, 334 | lbtr 139 |
. . . . . . . . . . . 12
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
336 | | leid 148 |
. . . . . . . . . . . 12
(b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
337 | 335, 336 | lel2or 170 |
. . . . . . . . . . 11
(((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
338 | 46, 337 | letr 137 |
. . . . . . . . . 10
(b0 ∩ (a0 ∪ p0)) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
339 | 26, 338 | lel2or 170 |
. . . . . . . . 9
(b1 ∪ (b0 ∩ (a0 ∪ p0))) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
340 | 25, 339 | letr 137 |
. . . . . . . 8
(b0 ∩ (a0 ∪ p0)) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
341 | 24, 340 | ler2an 173 |
. . . . . . 7
(b0 ∩ (a0 ∪ p0)) ≤ (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
342 | | or32 82 |
. . . . . . . . . . 11
(((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) = (((a0 ∩ b0) ∪ (c2 ∩ (c0 ∪ c1))) ∪ b1) |
343 | | orcom 73 |
. . . . . . . . . . 11
(((a0 ∩ b0) ∪ (c2 ∩ (c0 ∪ c1))) ∪ b1) = (b1 ∪ ((a0 ∩ b0) ∪ (c2 ∩ (c0 ∪ c1)))) |
344 | | leo 158 |
. . . . . . . . . . . . . . . 16
a0 ≤ (a0 ∪ a1) |
345 | | leo 158 |
. . . . . . . . . . . . . . . 16
b0 ≤ (b0 ∪ b1) |
346 | 344, 345 | le2an 169 |
. . . . . . . . . . . . . . 15
(a0 ∩ b0) ≤ ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
347 | | 3dp.c2 |
. . . . . . . . . . . . . . . 16
c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
348 | 347 | cm 61 |
. . . . . . . . . . . . . . 15
((a0 ∪ a1) ∩ (b0 ∪ b1)) = c2 |
349 | 346, 348 | lbtr 139 |
. . . . . . . . . . . . . 14
(a0 ∩ b0) ≤ c2 |
350 | 319 | cm 61 |
. . . . . . . . . . . . . . . 16
((a0 ∪ a1) ∩ (b0 ∪ b1)) = c1 |
351 | 346, 350 | lbtr 139 |
. . . . . . . . . . . . . . 15
(a0 ∩ b0) ≤ c1 |
352 | 351 | lerr 150 |
. . . . . . . . . . . . . 14
(a0 ∩ b0) ≤ (c0 ∪ c1) |
353 | 349, 352 | ler2an 173 |
. . . . . . . . . . . . 13
(a0 ∩ b0) ≤ (c2 ∩ (c0 ∪ c1)) |
354 | 353 | df-le2 131 |
. . . . . . . . . . . 12
((a0 ∩ b0) ∪ (c2 ∩ (c0 ∪ c1))) = (c2 ∩ (c0 ∪ c1)) |
355 | 354 | lor 70 |
. . . . . . . . . . 11
(b1 ∪ ((a0 ∩ b0) ∪ (c2 ∩ (c0 ∪ c1)))) = (b1 ∪ (c2 ∩ (c0 ∪ c1))) |
356 | 342, 343,
355 | 3tr 65 |
. . . . . . . . . 10
(((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) = (b1 ∪ (c2 ∩ (c0 ∪ c1))) |
357 | 356 | lan 77 |
. . . . . . . . 9
(b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |
358 | 347 | ran 78 |
. . . . . . . . . . . . . 14
(c2 ∩ (c0 ∪ c1)) = (((a0 ∪ a1) ∩ (b0 ∪ b1)) ∩ (c0 ∪ c1)) |
359 | | an32 83 |
. . . . . . . . . . . . . 14
(((a0 ∪ a1) ∩ (b0 ∪ b1)) ∩ (c0 ∪ c1)) = (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∩ (b0 ∪ b1)) |
360 | 358, 359 | tr 62 |
. . . . . . . . . . . . 13
(c2 ∩ (c0 ∪ c1)) = (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∩ (b0 ∪ b1)) |
361 | 360 | lor 70 |
. . . . . . . . . . . 12
(b1 ∪ (c2 ∩ (c0 ∪ c1))) = (b1 ∪ (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∩ (b0 ∪ b1))) |
362 | | leor 159 |
. . . . . . . . . . . . 13
b1 ≤ (b0 ∪ b1) |
363 | 362 | ml2i 1125 |
. . . . . . . . . . . 12
(b1 ∪ (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∩ (b0 ∪ b1))) = ((b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) ∩ (b0 ∪ b1)) |
364 | | ancom 74 |
. . . . . . . . . . . 12
((b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) ∩ (b0 ∪ b1)) = ((b0 ∪ b1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
365 | 361, 363,
364 | 3tr 65 |
. . . . . . . . . . 11
(b1 ∪ (c2 ∩ (c0 ∪ c1))) = ((b0 ∪ b1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
366 | 365 | lan 77 |
. . . . . . . . . 10
(b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ ((b0 ∪ b1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))))) |
367 | | anass 76 |
. . . . . . . . . . 11
((b0 ∩ (b0 ∪ b1)) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) = (b0 ∩ ((b0 ∪ b1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))))) |
368 | 367 | cm 61 |
. . . . . . . . . 10
(b0 ∩ ((b0 ∪ b1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))))) = ((b0 ∩ (b0 ∪ b1)) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
369 | | anabs 121 |
. . . . . . . . . . 11
(b0 ∩ (b0 ∪ b1)) = b0 |
370 | 369 | ran 78 |
. . . . . . . . . 10
((b0 ∩ (b0 ∪ b1)) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
371 | 366, 368,
370 | 3tr 65 |
. . . . . . . . 9
(b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
372 | 357, 371 | tr 62 |
. . . . . . . 8
(b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
373 | 372 | cm 61 |
. . . . . . 7
(b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) = (b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
374 | 341, 373 | lbtr 139 |
. . . . . 6
(b0 ∩ (a0 ∪ p0)) ≤ (b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
375 | | orass 75 |
. . . . . . . . . 10
(((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) = ((a0 ∩ b0) ∪ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |
376 | | orcom 73 |
. . . . . . . . . 10
((a0 ∩ b0) ∪ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) = ((b1 ∪ (c2 ∩ (c0 ∪ c1))) ∪ (a0 ∩ b0)) |
377 | 375, 376 | tr 62 |
. . . . . . . . 9
(((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) = ((b1 ∪ (c2 ∩ (c0 ∪ c1))) ∪ (a0 ∩ b0)) |
378 | 377 | lan 77 |
. . . . . . . 8
(b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ ((b1 ∪ (c2 ∩ (c0 ∪ c1))) ∪ (a0 ∩ b0))) |
379 | | lear 161 |
. . . . . . . . 9
(a0 ∩ b0) ≤ b0 |
380 | 379 | mldual2i 1127 |
. . . . . . . 8
(b0 ∩ ((b1 ∪ (c2 ∩ (c0 ∪ c1))) ∪ (a0 ∩ b0))) = ((b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) ∪ (a0 ∩ b0)) |
381 | | orcom 73 |
. . . . . . . 8
((b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) ∪ (a0 ∩ b0)) = ((a0 ∩ b0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
382 | 378, 380,
381 | 3tr 65 |
. . . . . . 7
(b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = ((a0 ∩ b0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
383 | | lea 160 |
. . . . . . . 8
(a0 ∩ b0) ≤ a0 |
384 | 383 | leror 152 |
. . . . . . 7
((a0 ∩ b0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
385 | 382, 384 | bltr 138 |
. . . . . 6
(b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
386 | 374, 385 | letr 137 |
. . . . 5
(b0 ∩ (a0 ∪ p0)) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
387 | 386 | df-le2 131 |
. . . 4
((b0 ∩ (a0 ∪ p0)) ∪ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))))) = (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
388 | 23, 387 | lbtr 139 |
. . 3
p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
389 | 2, 388 | lel2or 170 |
. 2
(a0 ∪ p) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
390 | 1, 389 | letr 137 |
1
p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |