Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > fh4r | GIF version |
Description: Foulis-Holland Theorem. (Contributed by NM, 23-Nov-1997.) |
Ref | Expression |
---|---|
fh.1 | a C b |
fh.2 | a C c |
Ref | Expression |
---|---|
fh4r | ((a ∩ c) ∪ b) = ((a ∪ b) ∩ (c ∪ b)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fh.1 | . . 3 a C b | |
2 | fh.2 | . . 3 a C c | |
3 | 1, 2 | fh4 472 | . 2 (b ∪ (a ∩ c)) = ((b ∪ a) ∩ (b ∪ c)) |
4 | ax-a2 31 | . 2 ((a ∩ c) ∪ b) = (b ∪ (a ∩ c)) | |
5 | ax-a2 31 | . . 3 (a ∪ b) = (b ∪ a) | |
6 | ax-a2 31 | . . 3 (c ∪ b) = (b ∪ c) | |
7 | 5, 6 | 2an 79 | . 2 ((a ∪ b) ∩ (c ∪ b)) = ((b ∪ a) ∩ (b ∪ c)) |
8 | 3, 4, 7 | 3tr1 63 | 1 ((a ∩ c) ∪ b) = ((a ∪ b) ∩ (c ∪ b)) |
Colors of variables: term |
Syntax hints: = wb 1 C wc 3 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: fh4rc 482 ud1lem1 560 ud1lem3 562 ud3lem1c 568 ud3lem3 576 ud4lem1c 579 ud4lem3 585 u4lemoa 623 u24lem 770 u3lem10 785 u3lem13a 789 u3lem13b 790 i1abs 801 test 802 test2 803 |
Copyright terms: Public domain | W3C validator |