Proof of Theorem go2n4
Step | Hyp | Ref
| Expression |
1 | | anass 76 |
. . 3
(((a ∪ b) ∩ (c
∪ d)) ∩ ((e ∪ f) ∩
(g ∪ h))) = ((a ∪
b) ∩ ((c ∪ d) ∩
((e ∪ f) ∩ (g
∪ h)))) |
2 | | ancom 74 |
. . . 4
((c ∪ d) ∩ ((e
∪ f) ∩ (g ∪ h))) =
(((e ∪ f) ∩ (g
∪ h)) ∩ (c ∪ d)) |
3 | 2 | lan 77 |
. . 3
((a ∪ b) ∩ ((c
∪ d) ∩ ((e ∪ f) ∩
(g ∪ h)))) = ((a
∪ b) ∩ (((e ∪ f) ∩
(g ∪ h)) ∩ (c
∪ d))) |
4 | 1, 3 | ax-r2 36 |
. 2
(((a ∪ b) ∩ (c
∪ d)) ∩ ((e ∪ f) ∩
(g ∪ h))) = ((a ∪
b) ∩ (((e ∪ f) ∩
(g ∪ h)) ∩ (c
∪ d))) |
5 | | go2n4.1 |
. . 3
a ≤ b⊥ |
6 | | go2n4.2 |
. . 3
b ≤ c⊥ |
7 | | anass 76 |
. . . . . 6
(((c →2 a) ∩ (a
→2 g)) ∩ ((g →2 e) ∩ (e
→2 c))) = ((c →2 a) ∩ ((a
→2 g) ∩ ((g →2 e) ∩ (e
→2 c)))) |
8 | | ancom 74 |
. . . . . . . 8
((a →2 g) ∩ ((g
→2 e) ∩ (e →2 c))) = (((g
→2 e) ∩ (e →2 c)) ∩ (a
→2 g)) |
9 | | an32 83 |
. . . . . . . 8
(((g →2 e) ∩ (e
→2 c)) ∩ (a →2 g)) = (((g
→2 e) ∩ (a →2 g)) ∩ (e
→2 c)) |
10 | 8, 9 | ax-r2 36 |
. . . . . . 7
((a →2 g) ∩ ((g
→2 e) ∩ (e →2 c))) = (((g
→2 e) ∩ (a →2 g)) ∩ (e
→2 c)) |
11 | 10 | lan 77 |
. . . . . 6
((c →2 a) ∩ ((a
→2 g) ∩ ((g →2 e) ∩ (e
→2 c)))) = ((c →2 a) ∩ (((g
→2 e) ∩ (a →2 g)) ∩ (e
→2 c))) |
12 | 7, 11 | ax-r2 36 |
. . . . 5
(((c →2 a) ∩ (a
→2 g)) ∩ ((g →2 e) ∩ (e
→2 c))) = ((c →2 a) ∩ (((g
→2 e) ∩ (a →2 g)) ∩ (e
→2 c))) |
13 | 12 | ax-r1 35 |
. . . 4
((c →2 a) ∩ (((g
→2 e) ∩ (a →2 g)) ∩ (e
→2 c))) = (((c →2 a) ∩ (a
→2 g)) ∩ ((g →2 e) ∩ (e
→2 c))) |
14 | | go2n4.9 |
. . . 4
(((c →2 a) ∩ (a
→2 g)) ∩ ((g →2 e) ∩ (e
→2 c))) ≤ (a →2 c) |
15 | 13, 14 | bltr 138 |
. . 3
((c →2 a) ∩ (((g
→2 e) ∩ (a →2 g)) ∩ (e
→2 c))) ≤ (a →2 c) |
16 | | go2n4.5 |
. . . . . 6
e ≤ f⊥ |
17 | | go2n4.6 |
. . . . . 6
f ≤ g⊥ |
18 | 16, 17 | govar2 897 |
. . . . 5
(e ∪ f) ≤ (g
→2 e) |
19 | | go2n4.7 |
. . . . . 6
g ≤ h⊥ |
20 | | go2n4.8 |
. . . . . 6
h ≤ a⊥ |
21 | 19, 20 | govar2 897 |
. . . . 5
(g ∪ h) ≤ (a
→2 g) |
22 | 18, 21 | le2an 169 |
. . . 4
((e ∪ f) ∩ (g
∪ h)) ≤ ((g →2 e) ∩ (a
→2 g)) |
23 | | go2n4.3 |
. . . . 5
c ≤ d⊥ |
24 | | go2n4.4 |
. . . . 5
d ≤ e⊥ |
25 | 23, 24 | govar2 897 |
. . . 4
(c ∪ d) ≤ (e
→2 c) |
26 | 22, 25 | le2an 169 |
. . 3
(((e ∪ f) ∩ (g
∪ h)) ∩ (c ∪ d)) ≤
(((g →2 e) ∩ (a
→2 g)) ∩ (e →2 c)) |
27 | 5, 6, 15, 26 | gon2n 898 |
. 2
((a ∪ b) ∩ (((e
∪ f) ∩ (g ∪ h))
∩ (c ∪ d))) ≤ (b
∪ c) |
28 | 4, 27 | bltr 138 |
1
(((a ∪ b) ∩ (c
∪ d)) ∩ ((e ∪ f) ∩
(g ∪ h))) ≤ (b
∪ c) |