| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > gon2n | GIF version | ||
| Description: Lemma for converting n-variable to 2n-variable Godowski equations. (Contributed by NM, 19-Nov-1999.) |
| Ref | Expression |
|---|---|
| govar.1 | a ≤ b⊥ |
| govar.2 | b ≤ c⊥ |
| gon2n.3 | ((c →2 a) ∩ d) ≤ (a →2 c) |
| gon2n.4 | e ≤ d |
| Ref | Expression |
|---|---|
| gon2n | ((a ∪ b) ∩ e) ≤ (b ∪ c) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lea 160 | . . 3 ((a ∪ b) ∩ e) ≤ (a ∪ b) | |
| 2 | govar.1 | . . . . . 6 a ≤ b⊥ | |
| 3 | govar.2 | . . . . . 6 b ≤ c⊥ | |
| 4 | 2, 3 | govar2 897 | . . . . 5 (a ∪ b) ≤ (c →2 a) |
| 5 | gon2n.4 | . . . . 5 e ≤ d | |
| 6 | 4, 5 | le2an 169 | . . . 4 ((a ∪ b) ∩ e) ≤ ((c →2 a) ∩ d) |
| 7 | gon2n.3 | . . . 4 ((c →2 a) ∩ d) ≤ (a →2 c) | |
| 8 | 6, 7 | letr 137 | . . 3 ((a ∪ b) ∩ e) ≤ (a →2 c) |
| 9 | 1, 8 | ler2an 173 | . 2 ((a ∪ b) ∩ e) ≤ ((a ∪ b) ∩ (a →2 c)) |
| 10 | 2, 3 | govar 896 | . 2 ((a ∪ b) ∩ (a →2 c)) ≤ (b ∪ c) |
| 11 | 9, 10 | letr 137 | 1 ((a ∪ b) ∩ e) ≤ (b ∪ c) |
| Colors of variables: term |
| Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: go2n4 899 go2n6 901 |
| Copyright terms: Public domain | W3C validator |