Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > gon2n | GIF version |
Description: Lemma for converting n-variable to 2n-variable Godowski equations. (Contributed by NM, 19-Nov-1999.) |
Ref | Expression |
---|---|
govar.1 | a ≤ b⊥ |
govar.2 | b ≤ c⊥ |
gon2n.3 | ((c →2 a) ∩ d) ≤ (a →2 c) |
gon2n.4 | e ≤ d |
Ref | Expression |
---|---|
gon2n | ((a ∪ b) ∩ e) ≤ (b ∪ c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lea 160 | . . 3 ((a ∪ b) ∩ e) ≤ (a ∪ b) | |
2 | govar.1 | . . . . . 6 a ≤ b⊥ | |
3 | govar.2 | . . . . . 6 b ≤ c⊥ | |
4 | 2, 3 | govar2 897 | . . . . 5 (a ∪ b) ≤ (c →2 a) |
5 | gon2n.4 | . . . . 5 e ≤ d | |
6 | 4, 5 | le2an 169 | . . . 4 ((a ∪ b) ∩ e) ≤ ((c →2 a) ∩ d) |
7 | gon2n.3 | . . . 4 ((c →2 a) ∩ d) ≤ (a →2 c) | |
8 | 6, 7 | letr 137 | . . 3 ((a ∪ b) ∩ e) ≤ (a →2 c) |
9 | 1, 8 | ler2an 173 | . 2 ((a ∪ b) ∩ e) ≤ ((a ∪ b) ∩ (a →2 c)) |
10 | 2, 3 | govar 896 | . 2 ((a ∪ b) ∩ (a →2 c)) ≤ (b ∪ c) |
11 | 9, 10 | letr 137 | 1 ((a ∪ b) ∩ e) ≤ (b ∪ c) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: go2n4 899 go2n6 901 |
Copyright terms: Public domain | W3C validator |