Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > govar2 | GIF version |
Description: Lemma for converting n-variable to 2n-variable Godowski equations. (Contributed by NM, 19-Nov-1999.) |
Ref | Expression |
---|---|
govar.1 | a ≤ b⊥ |
govar.2 | b ≤ c⊥ |
Ref | Expression |
---|---|
govar2 | (a ∪ b) ≤ (c →2 a) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | govar.2 | . . . 4 b ≤ c⊥ | |
2 | govar.1 | . . . . 5 a ≤ b⊥ | |
3 | 2 | lecon3 157 | . . . 4 b ≤ a⊥ |
4 | 1, 3 | ler2an 173 | . . 3 b ≤ (c⊥ ∩ a⊥ ) |
5 | 4 | lelor 166 | . 2 (a ∪ b) ≤ (a ∪ (c⊥ ∩ a⊥ )) |
6 | df-i2 45 | . . 3 (c →2 a) = (a ∪ (c⊥ ∩ a⊥ )) | |
7 | 6 | ax-r1 35 | . 2 (a ∪ (c⊥ ∩ a⊥ )) = (c →2 a) |
8 | 5, 7 | lbtr 139 | 1 (a ∪ b) ≤ (c →2 a) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 |
This theorem is referenced by: gon2n 898 go2n4 899 go2n6 901 |
Copyright terms: Public domain | W3C validator |