Proof of Theorem gomaex4
| Step | Hyp | Ref
| Expression |
| 1 | | go2n4.7 |
. . . . . . 7
g ≤ h⊥ |
| 2 | | go2n4.8 |
. . . . . . 7
h ≤ a⊥ |
| 3 | | go2n4.1 |
. . . . . . 7
a ≤ b⊥ |
| 4 | | go2n4.2 |
. . . . . . 7
b ≤ c⊥ |
| 5 | | go2n4.3 |
. . . . . . 7
c ≤ d⊥ |
| 6 | | go2n4.4 |
. . . . . . 7
d ≤ e⊥ |
| 7 | | go2n4.5 |
. . . . . . 7
e ≤ f⊥ |
| 8 | | go2n4.6 |
. . . . . . 7
f ≤ g⊥ |
| 9 | | gomaex4.9 |
. . . . . . 7
(((a →2 g) ∩ (g
→2 e)) ∩ ((e →2 c) ∩ (c
→2 a))) ≤ (g →2 a) |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | go2n4 899 |
. . . . . 6
(((g ∪ h) ∩ (a
∪ b)) ∩ ((c ∪ d) ∩
(e ∪ f))) ≤ (h
∪ a) |
| 11 | | an4 86 |
. . . . . . 7
(((a ∪ b) ∩ (c
∪ d)) ∩ ((e ∪ f) ∩
(g ∪ h))) = (((a
∪ b) ∩ (e ∪ f))
∩ ((c ∪ d) ∩ (g
∪ h))) |
| 12 | | ancom 74 |
. . . . . . . 8
(((a ∪ b) ∩ (e
∪ f)) ∩ ((c ∪ d) ∩
(g ∪ h))) = (((c
∪ d) ∩ (g ∪ h))
∩ ((a ∪ b) ∩ (e
∪ f))) |
| 13 | | ancom 74 |
. . . . . . . . 9
((c ∪ d) ∩ (g
∪ h)) = ((g ∪ h) ∩
(c ∪ d)) |
| 14 | 13 | ran 78 |
. . . . . . . 8
(((c ∪ d) ∩ (g
∪ h)) ∩ ((a ∪ b) ∩
(e ∪ f))) = (((g
∪ h) ∩ (c ∪ d))
∩ ((a ∪ b) ∩ (e
∪ f))) |
| 15 | 12, 14 | ax-r2 36 |
. . . . . . 7
(((a ∪ b) ∩ (e
∪ f)) ∩ ((c ∪ d) ∩
(g ∪ h))) = (((g
∪ h) ∩ (c ∪ d))
∩ ((a ∪ b) ∩ (e
∪ f))) |
| 16 | | an4 86 |
. . . . . . 7
(((g ∪ h) ∩ (c
∪ d)) ∩ ((a ∪ b) ∩
(e ∪ f))) = (((g
∪ h) ∩ (a ∪ b))
∩ ((c ∪ d) ∩ (e
∪ f))) |
| 17 | 11, 15, 16 | 3tr 65 |
. . . . . 6
(((a ∪ b) ∩ (c
∪ d)) ∩ ((e ∪ f) ∩
(g ∪ h))) = (((g
∪ h) ∩ (a ∪ b))
∩ ((c ∪ d) ∩ (e
∪ f))) |
| 18 | | ax-a2 31 |
. . . . . 6
(a ∪ h) = (h ∪
a) |
| 19 | 10, 17, 18 | le3tr1 140 |
. . . . 5
(((a ∪ b) ∩ (c
∪ d)) ∩ ((e ∪ f) ∩
(g ∪ h))) ≤ (a
∪ h) |
| 20 | | ancom 74 |
. . . . . . . . 9
((e ∪ f) ∩ (g
∪ h)) = ((g ∪ h) ∩
(e ∪ f)) |
| 21 | 20 | lan 77 |
. . . . . . . 8
(((a ∪ b) ∩ (c
∪ d)) ∩ ((e ∪ f) ∩
(g ∪ h))) = (((a
∪ b) ∩ (c ∪ d))
∩ ((g ∪ h) ∩ (e
∪ f))) |
| 22 | | an4 86 |
. . . . . . . 8
(((a ∪ b) ∩ (c
∪ d)) ∩ ((g ∪ h) ∩
(e ∪ f))) = (((a
∪ b) ∩ (g ∪ h))
∩ ((c ∪ d) ∩ (e
∪ f))) |
| 23 | | ancom 74 |
. . . . . . . . 9
((c ∪ d) ∩ (e
∪ f)) = ((e ∪ f) ∩
(c ∪ d)) |
| 24 | 23 | lan 77 |
. . . . . . . 8
(((a ∪ b) ∩ (g
∪ h)) ∩ ((c ∪ d) ∩
(e ∪ f))) = (((a
∪ b) ∩ (g ∪ h))
∩ ((e ∪ f) ∩ (c
∪ d))) |
| 25 | 21, 22, 24 | 3tr 65 |
. . . . . . 7
(((a ∪ b) ∩ (c
∪ d)) ∩ ((e ∪ f) ∩
(g ∪ h))) = (((a
∪ b) ∩ (g ∪ h))
∩ ((e ∪ f) ∩ (c
∪ d))) |
| 26 | | ancom 74 |
. . . . . . . 8
((a ∪ b) ∩ (g
∪ h)) = ((g ∪ h) ∩
(a ∪ b)) |
| 27 | | ancom 74 |
. . . . . . . 8
((e ∪ f) ∩ (c
∪ d)) = ((c ∪ d) ∩
(e ∪ f)) |
| 28 | 26, 27 | 2an 79 |
. . . . . . 7
(((a ∪ b) ∩ (g
∪ h)) ∩ ((e ∪ f) ∩
(c ∪ d))) = (((g
∪ h) ∩ (a ∪ b))
∩ ((c ∪ d) ∩ (e
∪ f))) |
| 29 | | ancom 74 |
. . . . . . 7
(((g ∪ h) ∩ (a
∪ b)) ∩ ((c ∪ d) ∩
(e ∪ f))) = (((c
∪ d) ∩ (e ∪ f))
∩ ((g ∪ h) ∩ (a
∪ b))) |
| 30 | 25, 28, 29 | 3tr 65 |
. . . . . 6
(((a ∪ b) ∩ (c
∪ d)) ∩ ((e ∪ f) ∩
(g ∪ h))) = (((c
∪ d) ∩ (e ∪ f))
∩ ((g ∪ h) ∩ (a
∪ b))) |
| 31 | | gomaex4.10 |
. . . . . . 7
(((e →2 c) ∩ (c
→2 a)) ∩ ((a →2 g) ∩ (g
→2 e))) ≤ (c →2 e) |
| 32 | 5, 6, 7, 8, 1, 2, 3, 4, 31 | go2n4 899 |
. . . . . 6
(((c ∪ d) ∩ (e
∪ f)) ∩ ((g ∪ h) ∩
(a ∪ b))) ≤ (d
∪ e) |
| 33 | 30, 32 | bltr 138 |
. . . . 5
(((a ∪ b) ∩ (c
∪ d)) ∩ ((e ∪ f) ∩
(g ∪ h))) ≤ (d
∪ e) |
| 34 | 19, 33 | ler2an 173 |
. . . 4
(((a ∪ b) ∩ (c
∪ d)) ∩ ((e ∪ f) ∩
(g ∪ h))) ≤ ((a
∪ h) ∩ (d ∪ e)) |
| 35 | 34 | leran 153 |
. . 3
((((a ∪ b) ∩ (c
∪ d)) ∩ ((e ∪ f) ∩
(g ∪ h))) ∩ ((a
∪ h) →1 (d ∪ e)⊥ )) ≤ (((a ∪ h) ∩
(d ∪ e)) ∩ ((a
∪ h) →1 (d ∪ e)⊥ )) |
| 36 | | go1 343 |
. . 3
(((a ∪ h) ∩ (d
∪ e)) ∩ ((a ∪ h)
→1 (d ∪ e)⊥ )) = 0 |
| 37 | 35, 36 | lbtr 139 |
. 2
((((a ∪ b) ∩ (c
∪ d)) ∩ ((e ∪ f) ∩
(g ∪ h))) ∩ ((a
∪ h) →1 (d ∪ e)⊥ )) ≤ 0 |
| 38 | | le0 147 |
. 2
0 ≤ ((((a ∪ b) ∩ (c
∪ d)) ∩ ((e ∪ f) ∩
(g ∪ h))) ∩ ((a
∪ h) →1 (d ∪ e)⊥ )) |
| 39 | 37, 38 | lebi 145 |
1
((((a ∪ b) ∩ (c
∪ d)) ∩ ((e ∪ f) ∩
(g ∪ h))) ∩ ((a
∪ h) →1 (d ∪ e)⊥ )) = 0 |