Proof of Theorem go2n6
Step | Hyp | Ref
| Expression |
1 | | anass 76 |
. . . . . . . . . 10
(((w ∪ x) ∩ (n
∪ u)) ∩ ((k ∪ m) ∩
(i ∪ j))) = ((w ∪
x) ∩ ((n ∪ u) ∩
((k ∪ m) ∩ (i
∪ j)))) |
2 | | ancom 74 |
. . . . . . . . . . . . 13
((k ∪ m) ∩ (i
∪ j)) = ((i ∪ j) ∩
(k ∪ m)) |
3 | 2 | lan 77 |
. . . . . . . . . . . 12
((n ∪ u) ∩ ((k
∪ m) ∩ (i ∪ j))) =
((n ∪ u) ∩ ((i
∪ j) ∩ (k ∪ m))) |
4 | | ancom 74 |
. . . . . . . . . . . 12
((n ∪ u) ∩ ((i
∪ j) ∩ (k ∪ m))) =
(((i ∪ j) ∩ (k
∪ m)) ∩ (n ∪ u)) |
5 | | anass 76 |
. . . . . . . . . . . 12
(((i ∪ j) ∩ (k
∪ m)) ∩ (n ∪ u)) =
((i ∪ j) ∩ ((k
∪ m) ∩ (n ∪ u))) |
6 | 3, 4, 5 | 3tr 65 |
. . . . . . . . . . 11
((n ∪ u) ∩ ((k
∪ m) ∩ (i ∪ j))) =
((i ∪ j) ∩ ((k
∪ m) ∩ (n ∪ u))) |
7 | 6 | lan 77 |
. . . . . . . . . 10
((w ∪ x) ∩ ((n
∪ u) ∩ ((k ∪ m) ∩
(i ∪ j)))) = ((w
∪ x) ∩ ((i ∪ j) ∩
((k ∪ m) ∩ (n
∪ u)))) |
8 | | ancom 74 |
. . . . . . . . . 10
((w ∪ x) ∩ ((i
∪ j) ∩ ((k ∪ m) ∩
(n ∪ u)))) = (((i
∪ j) ∩ ((k ∪ m) ∩
(n ∪ u))) ∩ (w
∪ x)) |
9 | 1, 7, 8 | 3tr 65 |
. . . . . . . . 9
(((w ∪ x) ∩ (n
∪ u)) ∩ ((k ∪ m) ∩
(i ∪ j))) = (((i
∪ j) ∩ ((k ∪ m) ∩
(n ∪ u))) ∩ (w
∪ x)) |
10 | 9 | ran 78 |
. . . . . . . 8
((((w ∪ x) ∩ (n
∪ u)) ∩ ((k ∪ m) ∩
(i ∪ j))) ∩ (y
∪ z)) = ((((i ∪ j) ∩
((k ∪ m) ∩ (n
∪ u))) ∩ (w ∪ x))
∩ (y ∪ z)) |
11 | | anass 76 |
. . . . . . . 8
((((i ∪ j) ∩ ((k
∪ m) ∩ (n ∪ u)))
∩ (w ∪ x)) ∩ (y
∪ z)) = (((i ∪ j) ∩
((k ∪ m) ∩ (n
∪ u))) ∩ ((w ∪ x) ∩
(y ∪ z))) |
12 | 10, 11 | ax-r2 36 |
. . . . . . 7
((((w ∪ x) ∩ (n
∪ u)) ∩ ((k ∪ m) ∩
(i ∪ j))) ∩ (y
∪ z)) = (((i ∪ j) ∩
((k ∪ m) ∩ (n
∪ u))) ∩ ((w ∪ x) ∩
(y ∪ z))) |
13 | 12 | ax-r1 35 |
. . . . . 6
(((i ∪ j) ∩ ((k
∪ m) ∩ (n ∪ u)))
∩ ((w ∪ x) ∩ (y
∪ z))) = ((((w ∪ x) ∩
(n ∪ u)) ∩ ((k
∪ m) ∩ (i ∪ j)))
∩ (y ∪ z)) |
14 | | anass 76 |
. . . . . 6
(((i ∪ j) ∩ ((k
∪ m) ∩ (n ∪ u)))
∩ ((w ∪ x) ∩ (y
∪ z))) = ((i ∪ j) ∩
(((k ∪ m) ∩ (n
∪ u)) ∩ ((w ∪ x) ∩
(y ∪ z)))) |
15 | | ancom 74 |
. . . . . 6
((((w ∪ x) ∩ (n
∪ u)) ∩ ((k ∪ m) ∩
(i ∪ j))) ∩ (y
∪ z)) = ((y ∪ z) ∩
(((w ∪ x) ∩ (n
∪ u)) ∩ ((k ∪ m) ∩
(i ∪ j)))) |
16 | 13, 14, 15 | 3tr2 64 |
. . . . 5
((i ∪ j) ∩ (((k
∪ m) ∩ (n ∪ u))
∩ ((w ∪ x) ∩ (y
∪ z)))) = ((y ∪ z) ∩
(((w ∪ x) ∩ (n
∪ u)) ∩ ((k ∪ m) ∩
(i ∪ j)))) |
17 | 16 | lan 77 |
. . . 4
((g ∪ h) ∩ ((i
∪ j) ∩ (((k ∪ m) ∩
(n ∪ u)) ∩ ((w
∪ x) ∩ (y ∪ z))))) =
((g ∪ h) ∩ ((y
∪ z) ∩ (((w ∪ x) ∩
(n ∪ u)) ∩ ((k
∪ m) ∩ (i ∪ j))))) |
18 | | anass 76 |
. . . 4
(((g ∪ h) ∩ (i
∪ j)) ∩ (((k ∪ m) ∩
(n ∪ u)) ∩ ((w
∪ x) ∩ (y ∪ z)))) =
((g ∪ h) ∩ ((i
∪ j) ∩ (((k ∪ m) ∩
(n ∪ u)) ∩ ((w
∪ x) ∩ (y ∪ z))))) |
19 | | anass 76 |
. . . 4
(((g ∪ h) ∩ (y
∪ z)) ∩ (((w ∪ x) ∩
(n ∪ u)) ∩ ((k
∪ m) ∩ (i ∪ j)))) =
((g ∪ h) ∩ ((y
∪ z) ∩ (((w ∪ x) ∩
(n ∪ u)) ∩ ((k
∪ m) ∩ (i ∪ j))))) |
20 | 17, 18, 19 | 3tr1 63 |
. . 3
(((g ∪ h) ∩ (i
∪ j)) ∩ (((k ∪ m) ∩
(n ∪ u)) ∩ ((w
∪ x) ∩ (y ∪ z)))) =
(((g ∪ h) ∩ (y
∪ z)) ∩ (((w ∪ x) ∩
(n ∪ u)) ∩ ((k
∪ m) ∩ (i ∪ j)))) |
21 | 20, 19 | ax-r2 36 |
. 2
(((g ∪ h) ∩ (i
∪ j)) ∩ (((k ∪ m) ∩
(n ∪ u)) ∩ ((w
∪ x) ∩ (y ∪ z)))) =
((g ∪ h) ∩ ((y
∪ z) ∩ (((w ∪ x) ∩
(n ∪ u)) ∩ ((k
∪ m) ∩ (i ∪ j))))) |
22 | | go2n6.1 |
. . 3
g ≤ h⊥ |
23 | | go2n6.2 |
. . 3
h ≤ i⊥ |
24 | | anass 76 |
. . . . 5
(((i →2 g) ∩ (g
→2 y)) ∩ (((y →2 w) ∩ (w
→2 n)) ∩ ((n →2 k) ∩ (k
→2 i)))) = ((i →2 g) ∩ ((g
→2 y) ∩ (((y →2 w) ∩ (w
→2 n)) ∩ ((n →2 k) ∩ (k
→2 i))))) |
25 | 24 | ax-r1 35 |
. . . 4
((i →2 g) ∩ ((g
→2 y) ∩ (((y →2 w) ∩ (w
→2 n)) ∩ ((n →2 k) ∩ (k
→2 i))))) = (((i →2 g) ∩ (g
→2 y)) ∩ (((y →2 w) ∩ (w
→2 n)) ∩ ((n →2 k) ∩ (k
→2 i)))) |
26 | | go2n6.13 |
. . . 4
(((i →2 g) ∩ (g
→2 y)) ∩ (((y →2 w) ∩ (w
→2 n)) ∩ ((n →2 k) ∩ (k
→2 i)))) ≤ (g →2 i) |
27 | 25, 26 | bltr 138 |
. . 3
((i →2 g) ∩ ((g
→2 y) ∩ (((y →2 w) ∩ (w
→2 n)) ∩ ((n →2 k) ∩ (k
→2 i))))) ≤ (g →2 i) |
28 | | go2n6.11 |
. . . . 5
y ≤ z⊥ |
29 | | go2n6.12 |
. . . . 5
z ≤ g⊥ |
30 | 28, 29 | govar2 897 |
. . . 4
(y ∪ z) ≤ (g
→2 y) |
31 | | go2n6.9 |
. . . . . . 7
w ≤ x⊥ |
32 | | go2n6.10 |
. . . . . . 7
x ≤ y⊥ |
33 | 31, 32 | govar2 897 |
. . . . . 6
(w ∪ x) ≤ (y
→2 w) |
34 | | go2n6.7 |
. . . . . . 7
n ≤ u⊥ |
35 | | go2n6.8 |
. . . . . . 7
u ≤ w⊥ |
36 | 34, 35 | govar2 897 |
. . . . . 6
(n ∪ u) ≤ (w
→2 n) |
37 | 33, 36 | le2an 169 |
. . . . 5
((w ∪ x) ∩ (n
∪ u)) ≤ ((y →2 w) ∩ (w
→2 n)) |
38 | | go2n6.5 |
. . . . . . 7
k ≤ m⊥ |
39 | | go2n6.6 |
. . . . . . 7
m ≤ n⊥ |
40 | 38, 39 | govar2 897 |
. . . . . 6
(k ∪ m) ≤ (n
→2 k) |
41 | | go2n6.3 |
. . . . . . 7
i ≤ j⊥ |
42 | | go2n6.4 |
. . . . . . 7
j ≤ k⊥ |
43 | 41, 42 | govar2 897 |
. . . . . 6
(i ∪ j) ≤ (k
→2 i) |
44 | 40, 43 | le2an 169 |
. . . . 5
((k ∪ m) ∩ (i
∪ j)) ≤ ((n →2 k) ∩ (k
→2 i)) |
45 | 37, 44 | le2an 169 |
. . . 4
(((w ∪ x) ∩ (n
∪ u)) ∩ ((k ∪ m) ∩
(i ∪ j))) ≤ (((y
→2 w) ∩ (w →2 n)) ∩ ((n
→2 k) ∩ (k →2 i))) |
46 | 30, 45 | le2an 169 |
. . 3
((y ∪ z) ∩ (((w
∪ x) ∩ (n ∪ u))
∩ ((k ∪ m) ∩ (i
∪ j)))) ≤ ((g →2 y) ∩ (((y
→2 w) ∩ (w →2 n)) ∩ ((n
→2 k) ∩ (k →2 i)))) |
47 | 22, 23, 27, 46 | gon2n 898 |
. 2
((g ∪ h) ∩ ((y
∪ z) ∩ (((w ∪ x) ∩
(n ∪ u)) ∩ ((k
∪ m) ∩ (i ∪ j)))))
≤ (h ∪ i) |
48 | 21, 47 | bltr 138 |
1
(((g ∪ h) ∩ (i
∪ j)) ∩ (((k ∪ m) ∩
(n ∪ u)) ∩ ((w
∪ x) ∩ (y ∪ z))))
≤ (h ∪ i) |