Proof of Theorem gomaex3lem8
| Step | Hyp | Ref
| Expression |
| 1 | | an32 83 |
. . 3
(((a ∪ b) ∩ (d⊥ ∩ e⊥ )) ∩ ((r ∪ (p⊥ →1 q)) ∩ p⊥ )) = (((a ∪ b) ∩
((r ∪ (p⊥ →1 q)) ∩ p⊥ )) ∩ (d⊥ ∩ e⊥ )) |
| 2 | | anor3 90 |
. . . . 5
(d⊥ ∩ e⊥ ) = (d ∪ e)⊥ |
| 3 | 2 | lan 77 |
. . . 4
((a ∪ b) ∩ (d⊥ ∩ e⊥ )) = ((a ∪ b) ∩
(d ∪ e)⊥ ) |
| 4 | 3 | ran 78 |
. . 3
(((a ∪ b) ∩ (d⊥ ∩ e⊥ )) ∩ ((r ∪ (p⊥ →1 q)) ∩ p⊥ )) = (((a ∪ b) ∩
(d ∪ e)⊥ ) ∩ ((r ∪ (p⊥ →1 q)) ∩ p⊥ )) |
| 5 | | an4 86 |
. . 3
(((a ∪ b) ∩ ((r
∪ (p⊥ →1
q)) ∩ p⊥ )) ∩ (d⊥ ∩ e⊥ )) = (((a ∪ b) ∩
d⊥ ) ∩ (((r ∪ (p⊥ →1 q)) ∩ p⊥ ) ∩ e⊥ )) |
| 6 | 1, 4, 5 | 3tr2 64 |
. 2
(((a ∪ b) ∩ (d
∪ e)⊥ ) ∩
((r ∪ (p⊥ →1 q)) ∩ p⊥ )) = (((a ∪ b) ∩
d⊥ ) ∩ (((r ∪ (p⊥ →1 q)) ∩ p⊥ ) ∩ e⊥ )) |
| 7 | | gomaex3lem5.1 |
. . 3
a ≤ b⊥ |
| 8 | | gomaex3lem5.2 |
. . 3
b ≤ c⊥ |
| 9 | | gomaex3lem5.3 |
. . 3
c ≤ d⊥ |
| 10 | | gomaex3lem5.5 |
. . 3
e ≤ f⊥ |
| 11 | | gomaex3lem5.6 |
. . 3
f ≤ a⊥ |
| 12 | | gomaex3lem5.8 |
. . 3
(((i →2 g) ∩ (g
→2 y)) ∩ (((y →2 w) ∩ (w
→2 n)) ∩ ((n →2 k) ∩ (k
→2 i)))) ≤ (g →2 i) |
| 13 | | gomaex3lem5.9 |
. . 3
p = ((a ∪ b)
→1 (d ∪ e)⊥
)⊥ |
| 14 | | gomaex3lem5.10 |
. . 3
q = ((e ∪ f)
→1 (b ∪ c)⊥
)⊥ |
| 15 | | gomaex3lem5.11 |
. . 3
r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) |
| 16 | | gomaex3lem5.12 |
. . 3
g = a |
| 17 | | gomaex3lem5.13 |
. . 3
h = b |
| 18 | | gomaex3lem5.14 |
. . 3
i = c |
| 19 | | gomaex3lem5.15 |
. . 3
j = (c ∪ d)⊥ |
| 20 | | gomaex3lem5.16 |
. . 3
k = r |
| 21 | | gomaex3lem5.17 |
. . 3
m = (p⊥ →1 q) |
| 22 | | gomaex3lem5.18 |
. . 3
n = (p⊥ →1 q)⊥ |
| 23 | | gomaex3lem5.19 |
. . 3
u = (p⊥ ∩ q) |
| 24 | | gomaex3lem5.20 |
. . 3
w = q⊥ |
| 25 | | gomaex3lem5.21 |
. . 3
x = q |
| 26 | | gomaex3lem5.22 |
. . 3
y = (e ∪ f)⊥ |
| 27 | | gomaex3lem5.23 |
. . 3
z = f |
| 28 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 | gomaex3lem7 920 |
. 2
(((a ∪ b) ∩ d⊥ ) ∩ (((r ∪ (p⊥ →1 q)) ∩ p⊥ ) ∩ e⊥ )) ≤ (b ∪ c) |
| 29 | 6, 28 | bltr 138 |
1
(((a ∪ b) ∩ (d
∪ e)⊥ ) ∩
((r ∪ (p⊥ →1 q)) ∩ p⊥ )) ≤ (b ∪ c) |