Proof of Theorem gomaex3lem7
Step | Hyp | Ref
| Expression |
1 | | gomaex3lem5.3 |
. . . . . 6
c ≤ d⊥ |
2 | 1 | gomaex3lem1 914 |
. . . . 5
(c ∪ (c ∪ d)⊥ ) = d⊥ |
3 | 2 | lan 77 |
. . . 4
((a ∪ b) ∩ (c
∪ (c ∪ d)⊥ )) = ((a ∪ b) ∩
d⊥ ) |
4 | | gomaex3lem3 916 |
. . . . . 6
((p⊥ →1
q)⊥ ∪ (p⊥ ∩ q)) = p⊥ |
5 | 4 | lan 77 |
. . . . 5
((r ∪ (p⊥ →1 q)) ∩ ((p⊥ →1 q)⊥ ∪ (p⊥ ∩ q))) = ((r ∪
(p⊥ →1
q)) ∩ p⊥ ) |
6 | | ancom 74 |
. . . . . 6
((q⊥ ∪ q) ∩ ((e
∪ f)⊥ ∪ f)) = (((e ∪
f)⊥ ∪ f) ∩ (q⊥ ∪ q)) |
7 | | gomaex3lem5.5 |
. . . . . . . 8
e ≤ f⊥ |
8 | 7 | gomaex3lem2 915 |
. . . . . . 7
((e ∪ f)⊥ ∪ f) = e⊥ |
9 | | ax-a2 31 |
. . . . . . . 8
(q⊥ ∪ q) = (q ∪
q⊥ ) |
10 | | df-t 41 |
. . . . . . . . 9
1 = (q ∪ q⊥ ) |
11 | 10 | ax-r1 35 |
. . . . . . . 8
(q ∪ q⊥ ) = 1 |
12 | 9, 11 | ax-r2 36 |
. . . . . . 7
(q⊥ ∪ q) = 1 |
13 | 8, 12 | 2an 79 |
. . . . . 6
(((e ∪ f)⊥ ∪ f) ∩ (q⊥ ∪ q)) = (e⊥ ∩ 1) |
14 | | an1 106 |
. . . . . 6
(e⊥ ∩ 1) =
e⊥ |
15 | 6, 13, 14 | 3tr 65 |
. . . . 5
((q⊥ ∪ q) ∩ ((e
∪ f)⊥ ∪ f)) = e⊥ |
16 | 5, 15 | 2an 79 |
. . . 4
(((r ∪ (p⊥ →1 q)) ∩ ((p⊥ →1 q)⊥ ∪ (p⊥ ∩ q))) ∩ ((q⊥ ∪ q) ∩ ((e
∪ f)⊥ ∪ f))) = (((r
∪ (p⊥ →1
q)) ∩ p⊥ ) ∩ e⊥ ) |
17 | 3, 16 | 2an 79 |
. . 3
(((a ∪ b) ∩ (c
∪ (c ∪ d)⊥ )) ∩ (((r ∪ (p⊥ →1 q)) ∩ ((p⊥ →1 q)⊥ ∪ (p⊥ ∩ q))) ∩ ((q⊥ ∪ q) ∩ ((e
∪ f)⊥ ∪ f)))) = (((a
∪ b) ∩ d⊥ ) ∩ (((r ∪ (p⊥ →1 q)) ∩ p⊥ ) ∩ e⊥ )) |
18 | 17 | ax-r1 35 |
. 2
(((a ∪ b) ∩ d⊥ ) ∩ (((r ∪ (p⊥ →1 q)) ∩ p⊥ ) ∩ e⊥ )) = (((a ∪ b) ∩
(c ∪ (c ∪ d)⊥ )) ∩ (((r ∪ (p⊥ →1 q)) ∩ ((p⊥ →1 q)⊥ ∪ (p⊥ ∩ q))) ∩ ((q⊥ ∪ q) ∩ ((e
∪ f)⊥ ∪ f)))) |
19 | | gomaex3lem5.1 |
. . 3
a ≤ b⊥ |
20 | | gomaex3lem5.2 |
. . 3
b ≤ c⊥ |
21 | | gomaex3lem5.6 |
. . 3
f ≤ a⊥ |
22 | | gomaex3lem5.8 |
. . 3
(((i →2 g) ∩ (g
→2 y)) ∩ (((y →2 w) ∩ (w
→2 n)) ∩ ((n →2 k) ∩ (k
→2 i)))) ≤ (g →2 i) |
23 | | gomaex3lem5.9 |
. . 3
p = ((a ∪ b)
→1 (d ∪ e)⊥
)⊥ |
24 | | gomaex3lem5.10 |
. . 3
q = ((e ∪ f)
→1 (b ∪ c)⊥
)⊥ |
25 | | gomaex3lem5.11 |
. . 3
r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) |
26 | | gomaex3lem5.12 |
. . 3
g = a |
27 | | gomaex3lem5.13 |
. . 3
h = b |
28 | | gomaex3lem5.14 |
. . 3
i = c |
29 | | gomaex3lem5.15 |
. . 3
j = (c ∪ d)⊥ |
30 | | gomaex3lem5.16 |
. . 3
k = r |
31 | | gomaex3lem5.17 |
. . 3
m = (p⊥ →1 q) |
32 | | gomaex3lem5.18 |
. . 3
n = (p⊥ →1 q)⊥ |
33 | | gomaex3lem5.19 |
. . 3
u = (p⊥ ∩ q) |
34 | | gomaex3lem5.20 |
. . 3
w = q⊥ |
35 | | gomaex3lem5.21 |
. . 3
x = q |
36 | | gomaex3lem5.22 |
. . 3
y = (e ∪ f)⊥ |
37 | | gomaex3lem5.23 |
. . 3
z = f |
38 | 19, 20, 1, 7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37 | gomaex3lem6 919 |
. 2
(((a ∪ b) ∩ (c
∪ (c ∪ d)⊥ )) ∩ (((r ∪ (p⊥ →1 q)) ∩ ((p⊥ →1 q)⊥ ∪ (p⊥ ∩ q))) ∩ ((q⊥ ∪ q) ∩ ((e
∪ f)⊥ ∪ f)))) ≤ (b
∪ c) |
39 | 18, 38 | bltr 138 |
1
(((a ∪ b) ∩ d⊥ ) ∩ (((r ∪ (p⊥ →1 q)) ∩ p⊥ ) ∩ e⊥ )) ≤ (b ∪ c) |