Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > an4 | GIF version |
Description: Swap conjuncts. (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
an4 | ((a ∩ b) ∩ (c ∩ d)) = ((a ∩ c) ∩ (b ∩ d)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an12 81 | . . 3 (b ∩ (c ∩ d)) = (c ∩ (b ∩ d)) | |
2 | 1 | lan 77 | . 2 (a ∩ (b ∩ (c ∩ d))) = (a ∩ (c ∩ (b ∩ d))) |
3 | anass 76 | . 2 ((a ∩ b) ∩ (c ∩ d)) = (a ∩ (b ∩ (c ∩ d))) | |
4 | anass 76 | . 2 ((a ∩ c) ∩ (b ∩ d)) = (a ∩ (c ∩ (b ∩ d))) | |
5 | 2, 3, 4 | 3tr1 63 | 1 ((a ∩ b) ∩ (c ∩ d)) = ((a ∩ c) ∩ (b ∩ d)) |
Colors of variables: term |
Syntax hints: = wb 1 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 |
This theorem is referenced by: anandi 114 anandir 115 wwfh2 217 wfh2 424 fh2 470 gsth 489 i3bi 496 ud4lem1a 577 ud5lem1c 588 ud5lem3a 591 ud5lem3c 593 u5lembi 725 u3lem13b 790 3vth7 810 mlalem 832 bi3 839 bi4 840 mlaconj4 844 comanblem1 870 comanblem2 871 mhlem 876 mh 879 marsdenlem3 882 marsdenlem4 883 mhcor1 888 gomaex4 900 gomaex3lem8 921 vneulem16 1146 vneulemexp 1148 |
Copyright terms: Public domain | W3C validator |