Proof of Theorem govar
Step | Hyp | Ref
| Expression |
1 | | df-i2 45 |
. . . 4
(a →2 c) = (c ∪
(a⊥ ∩ c⊥ )) |
2 | 1 | lan 77 |
. . 3
((a ∪ b) ∩ (a
→2 c)) = ((a ∪ b) ∩
(c ∪ (a⊥ ∩ c⊥ ))) |
3 | | ax-a2 31 |
. . . . 5
(a ∪ b) = (b ∪
a) |
4 | 3 | ran 78 |
. . . 4
((a ∪ b) ∩ (c
∪ (a⊥ ∩ c⊥ ))) = ((b ∪ a) ∩
(c ∪ (a⊥ ∩ c⊥ ))) |
5 | | govar.2 |
. . . . . . . 8
b ≤ c⊥ |
6 | 5 | lecom 180 |
. . . . . . 7
b C c⊥ |
7 | 6 | comcom7 460 |
. . . . . 6
b C c |
8 | | govar.1 |
. . . . . . . . . . 11
a ≤ b⊥ |
9 | 8 | lecom 180 |
. . . . . . . . . 10
a C b⊥ |
10 | 9 | comcom7 460 |
. . . . . . . . 9
a C b |
11 | 10 | comcom 453 |
. . . . . . . 8
b C a |
12 | 11 | comcom2 183 |
. . . . . . 7
b C a⊥ |
13 | 12, 6 | com2an 484 |
. . . . . 6
b C (a⊥ ∩ c⊥ ) |
14 | 7, 13 | com2or 483 |
. . . . 5
b C (c ∪ (a⊥ ∩ c⊥ )) |
15 | 14, 11 | fh2r 474 |
. . . 4
((b ∪ a) ∩ (c
∪ (a⊥ ∩ c⊥ ))) = ((b ∩ (c ∪
(a⊥ ∩ c⊥ ))) ∪ (a ∩ (c ∪
(a⊥ ∩ c⊥ )))) |
16 | 4, 15 | ax-r2 36 |
. . 3
((a ∪ b) ∩ (c
∪ (a⊥ ∩ c⊥ ))) = ((b ∩ (c ∪
(a⊥ ∩ c⊥ ))) ∪ (a ∩ (c ∪
(a⊥ ∩ c⊥ )))) |
17 | | coman1 185 |
. . . . . . 7
(a⊥ ∩ c⊥ ) C a⊥ |
18 | 17 | comcom7 460 |
. . . . . 6
(a⊥ ∩ c⊥ ) C a |
19 | | coman2 186 |
. . . . . . 7
(a⊥ ∩ c⊥ ) C c⊥ |
20 | 19 | comcom7 460 |
. . . . . 6
(a⊥ ∩ c⊥ ) C c |
21 | 18, 20 | fh2c 477 |
. . . . 5
(a ∩ (c ∪ (a⊥ ∩ c⊥ ))) = ((a ∩ c) ∪
(a ∩ (a⊥ ∩ c⊥ ))) |
22 | | dff 101 |
. . . . . . . . 9
0 = (a ∩ a⊥ ) |
23 | 22 | ran 78 |
. . . . . . . 8
(0 ∩ c⊥ ) =
((a ∩ a⊥ ) ∩ c⊥ ) |
24 | 23 | ax-r1 35 |
. . . . . . 7
((a ∩ a⊥ ) ∩ c⊥ ) = (0 ∩ c⊥ ) |
25 | | anass 76 |
. . . . . . 7
((a ∩ a⊥ ) ∩ c⊥ ) = (a ∩ (a⊥ ∩ c⊥ )) |
26 | | an0r 109 |
. . . . . . 7
(0 ∩ c⊥ ) =
0 |
27 | 24, 25, 26 | 3tr2 64 |
. . . . . 6
(a ∩ (a⊥ ∩ c⊥ )) = 0 |
28 | 27 | lor 70 |
. . . . 5
((a ∩ c) ∪ (a
∩ (a⊥ ∩ c⊥ ))) = ((a ∩ c) ∪
0) |
29 | | or0 102 |
. . . . 5
((a ∩ c) ∪ 0) = (a
∩ c) |
30 | 21, 28, 29 | 3tr 65 |
. . . 4
(a ∩ (c ∪ (a⊥ ∩ c⊥ ))) = (a ∩ c) |
31 | 30 | lor 70 |
. . 3
((b ∩ (c ∪ (a⊥ ∩ c⊥ ))) ∪ (a ∩ (c ∪
(a⊥ ∩ c⊥ )))) = ((b ∩ (c ∪
(a⊥ ∩ c⊥ ))) ∪ (a ∩ c)) |
32 | 2, 16, 31 | 3tr 65 |
. 2
((a ∪ b) ∩ (a
→2 c)) = ((b ∩ (c ∪
(a⊥ ∩ c⊥ ))) ∪ (a ∩ c)) |
33 | | lea 160 |
. . 3
(b ∩ (c ∪ (a⊥ ∩ c⊥ ))) ≤ b |
34 | | lear 161 |
. . 3
(a ∩ c) ≤ c |
35 | 33, 34 | le2or 168 |
. 2
((b ∩ (c ∪ (a⊥ ∩ c⊥ ))) ∪ (a ∩ c)) ≤
(b ∪ c) |
36 | 32, 35 | bltr 138 |
1
((a ∪ b) ∩ (a
→2 c)) ≤ (b ∪ c) |