| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > gstho | GIF version | ||
| Description: "OR" version of Gudder-Schelp's Theorem. (Contributed by NM, 19-Oct-1998.) |
| Ref | Expression |
|---|---|
| gstho.1 | b C c |
| gstho.2 | a C (b ∪ c) |
| Ref | Expression |
|---|---|
| gstho | (a ∪ b) C c |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anor3 90 | . . . 4 (a⊥ ∩ b⊥ ) = (a ∪ b)⊥ | |
| 2 | 1 | ax-r1 35 | . . 3 (a ∪ b)⊥ = (a⊥ ∩ b⊥ ) |
| 3 | gstho.1 | . . . . 5 b C c | |
| 4 | 3 | comcom4 455 | . . . 4 b⊥ C c⊥ |
| 5 | gstho.2 | . . . . . 6 a C (b ∪ c) | |
| 6 | 5 | comcom4 455 | . . . . 5 a⊥ C (b ∪ c)⊥ |
| 7 | anor3 90 | . . . . . 6 (b⊥ ∩ c⊥ ) = (b ∪ c)⊥ | |
| 8 | 7 | ax-r1 35 | . . . . 5 (b ∪ c)⊥ = (b⊥ ∩ c⊥ ) |
| 9 | 6, 8 | cbtr 182 | . . . 4 a⊥ C (b⊥ ∩ c⊥ ) |
| 10 | 4, 9 | gsth2 490 | . . 3 (a⊥ ∩ b⊥ ) C c⊥ |
| 11 | 2, 10 | bctr 181 | . 2 (a ∪ b)⊥ C c⊥ |
| 12 | 11 | comcom5 458 | 1 (a ∪ b) C c |
| Colors of variables: term |
| Syntax hints: C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |