Proof of Theorem mhlem2
Step | Hyp | Ref
| Expression |
1 | | mh.1 |
. . . 4
a C c |
2 | | mh.3 |
. . . . 5
b C c |
3 | 2 | comcom3 454 |
. . . 4
b⊥ C
c |
4 | 1, 3 | mhlem1 877 |
. . 3
((a ∪ c) ∩ (c⊥ ∪ b⊥ )) = ((a ∩ c⊥ ) ∪ (c ∩ b⊥ )) |
5 | | ax-a2 31 |
. . . . 5
(a⊥ ∪ d⊥ ) = (d⊥ ∪ a⊥ ) |
6 | 5 | lan 77 |
. . . 4
((b ∪ d) ∩ (a⊥ ∪ d⊥ )) = ((b ∪ d) ∩
(d⊥ ∪ a⊥ )) |
7 | | mh.4 |
. . . . 5
b C d |
8 | | mh.2 |
. . . . . 6
a C d |
9 | 8 | comcom3 454 |
. . . . 5
a⊥ C
d |
10 | 7, 9 | mhlem1 877 |
. . . 4
((b ∪ d) ∩ (d⊥ ∪ a⊥ )) = ((b ∩ d⊥ ) ∪ (d ∩ a⊥ )) |
11 | 6, 10 | ax-r2 36 |
. . 3
((b ∪ d) ∩ (a⊥ ∪ d⊥ )) = ((b ∩ d⊥ ) ∪ (d ∩ a⊥ )) |
12 | 4, 11 | 2an 79 |
. 2
(((a ∪ c) ∩ (c⊥ ∪ b⊥ )) ∩ ((b ∪ d) ∩
(a⊥ ∪ d⊥ ))) = (((a ∩ c⊥ ) ∪ (c ∩ b⊥ )) ∩ ((b ∩ d⊥ ) ∪ (d ∩ a⊥ ))) |
13 | | leao2 163 |
. . . . . 6
(a ∩ c⊥ ) ≤ (c⊥ ∪ b) |
14 | | leao3 164 |
. . . . . 6
(a ∩ c⊥ ) ≤ (d⊥ ∪ a) |
15 | 13, 14 | ler2an 173 |
. . . . 5
(a ∩ c⊥ ) ≤ ((c⊥ ∪ b) ∩ (d⊥ ∪ a)) |
16 | | leao3 164 |
. . . . . 6
(b ∩ d⊥ ) ≤ (c⊥ ∪ b) |
17 | | leao2 163 |
. . . . . 6
(b ∩ d⊥ ) ≤ (d⊥ ∪ a) |
18 | 16, 17 | ler2an 173 |
. . . . 5
(b ∩ d⊥ ) ≤ ((c⊥ ∪ b) ∩ (d⊥ ∪ a)) |
19 | 15, 18 | lel2or 170 |
. . . 4
((a ∩ c⊥ ) ∪ (b ∩ d⊥ )) ≤ ((c⊥ ∪ b) ∩ (d⊥ ∪ a)) |
20 | | oran2 92 |
. . . . . 6
(c⊥ ∪ b) = (c ∩
b⊥
)⊥ |
21 | | oran2 92 |
. . . . . 6
(d⊥ ∪ a) = (d ∩
a⊥
)⊥ |
22 | 20, 21 | 2an 79 |
. . . . 5
((c⊥ ∪ b) ∩ (d⊥ ∪ a)) = ((c ∩
b⊥ )⊥
∩ (d ∩ a⊥ )⊥
) |
23 | | anor3 90 |
. . . . 5
((c ∩ b⊥ )⊥ ∩
(d ∩ a⊥ )⊥ ) =
((c ∩ b⊥ ) ∪ (d ∩ a⊥
))⊥ |
24 | 22, 23 | ax-r2 36 |
. . . 4
((c⊥ ∪ b) ∩ (d⊥ ∪ a)) = ((c ∩
b⊥ ) ∪ (d ∩ a⊥
))⊥ |
25 | 19, 24 | lbtr 139 |
. . 3
((a ∩ c⊥ ) ∪ (b ∩ d⊥ )) ≤ ((c ∩ b⊥ ) ∪ (d ∩ a⊥
))⊥ |
26 | 25 | mhlem 876 |
. 2
(((a ∩ c⊥ ) ∪ (c ∩ b⊥ )) ∩ ((b ∩ d⊥ ) ∪ (d ∩ a⊥ ))) = (((a ∩ c⊥ ) ∩ (b ∩ d⊥ )) ∪ ((c ∩ b⊥ ) ∩ (d ∩ a⊥ ))) |
27 | 12, 26 | ax-r2 36 |
1
(((a ∪ c) ∩ (c⊥ ∪ b⊥ )) ∩ ((b ∪ d) ∩
(a⊥ ∪ d⊥ ))) = (((a ∩ c⊥ ) ∩ (b ∩ d⊥ )) ∪ ((c ∩ b⊥ ) ∩ (d ∩ a⊥ ))) |