Proof of Theorem mhlem
Step | Hyp | Ref
| Expression |
1 | | comor1 461 |
. . . . . . 7
(a ∪ b) C a |
2 | | comor2 462 |
. . . . . . 7
(a ∪ b) C b |
3 | 1, 2 | com2an 484 |
. . . . . 6
(a ∪ b) C (a
∩ b) |
4 | | mhlem.1 |
. . . . . . . 8
(a ∪ b) ≤ (c ∪
d)⊥ |
5 | 4 | lecom 180 |
. . . . . . 7
(a ∪ b) C (c
∪ d)⊥ |
6 | 5 | comcom7 460 |
. . . . . 6
(a ∪ b) C (c
∪ d) |
7 | 3, 6 | fh1r 473 |
. . . . 5
(((a ∩ b) ∪ (c
∪ d)) ∩ (a ∪ b)) =
(((a ∩ b) ∩ (a
∪ b)) ∪ ((c ∪ d) ∩
(a ∪ b))) |
8 | | comor1 461 |
. . . . . . 7
(c ∪ d) C c |
9 | | comor2 462 |
. . . . . . 7
(c ∪ d) C d |
10 | 8, 9 | com2an 484 |
. . . . . 6
(c ∪ d) C (c
∩ d) |
11 | | leao1 162 |
. . . . . . . . . 10
(a ∩ b) ≤ (a ∪
b) |
12 | 11, 4 | letr 137 |
. . . . . . . . 9
(a ∩ b) ≤ (c ∪
d)⊥ |
13 | 12 | lecom 180 |
. . . . . . . 8
(a ∩ b) C (c
∪ d)⊥ |
14 | 13 | comcom7 460 |
. . . . . . 7
(a ∩ b) C (c
∪ d) |
15 | 14 | comcom 453 |
. . . . . 6
(c ∪ d) C (a
∩ b) |
16 | 10, 15 | fh2rc 480 |
. . . . 5
(((a ∩ b) ∪ (c
∪ d)) ∩ (c ∩ d)) =
(((a ∩ b) ∩ (c
∩ d)) ∪ ((c ∪ d) ∩
(c ∩ d))) |
17 | 7, 16 | 2or 72 |
. . . 4
((((a ∩ b) ∪ (c
∪ d)) ∩ (a ∪ b))
∪ (((a ∩ b) ∪ (c
∪ d)) ∩ (c ∩ d))) =
((((a ∩ b) ∩ (a
∪ b)) ∪ ((c ∪ d) ∩
(a ∪ b))) ∪ (((a
∩ b) ∩ (c ∩ d))
∪ ((c ∪ d) ∩ (c
∩ d)))) |
18 | 11 | lerr 150 |
. . . . . . . 8
(a ∩ b) ≤ ((c
∩ d) ∪ (a ∪ b)) |
19 | 18 | lecom 180 |
. . . . . . 7
(a ∩ b) C ((c
∩ d) ∪ (a ∪ b)) |
20 | 14, 19 | fh3 471 |
. . . . . 6
((a ∩ b) ∪ ((c
∪ d) ∩ ((c ∩ d) ∪
(a ∪ b)))) = (((a
∩ b) ∪ (c ∪ d))
∩ ((a ∩ b) ∪ ((c
∩ d) ∪ (a ∪ b)))) |
21 | | id 59 |
. . . . . . . 8
((a ∪ c) ∩ (b
∪ d)) = ((a ∪ c) ∩
(b ∪ d)) |
22 | 4 | mhlemlem1 874 |
. . . . . . . . 9
(((a ∪ b) ∪ c)
∩ (a ∪ (c ∪ d))) =
(a ∪ c) |
23 | 4 | mhlemlem2 875 |
. . . . . . . . 9
(((a ∪ b) ∪ d)
∩ (b ∪ (c ∪ d))) =
(b ∪ d) |
24 | 22, 23 | 2an 79 |
. . . . . . . 8
((((a ∪ b) ∪ c)
∩ (a ∪ (c ∪ d)))
∩ (((a ∪ b) ∪ d)
∩ (b ∪ (c ∪ d)))) =
((a ∪ c) ∩ (b
∪ d)) |
25 | 21, 21, 24 | 3tr1 63 |
. . . . . . 7
((a ∪ c) ∩ (b
∪ d)) = ((((a ∪ b) ∪
c) ∩ (a ∪ (c ∪
d))) ∩ (((a ∪ b) ∪
d) ∩ (b ∪ (c ∪
d)))) |
26 | | an4 86 |
. . . . . . . 8
((((a ∪ b) ∪ c)
∩ (a ∪ (c ∪ d)))
∩ (((a ∪ b) ∪ d)
∩ (b ∪ (c ∪ d)))) =
((((a ∪ b) ∪ c)
∩ ((a ∪ b) ∪ d))
∩ ((a ∪ (c ∪ d))
∩ (b ∪ (c ∪ d)))) |
27 | | ancom 74 |
. . . . . . . 8
((((a ∪ b) ∪ c)
∩ ((a ∪ b) ∪ d))
∩ ((a ∪ (c ∪ d))
∩ (b ∪ (c ∪ d)))) =
(((a ∪ (c ∪ d))
∩ (b ∪ (c ∪ d)))
∩ (((a ∪ b) ∪ c)
∩ ((a ∪ b) ∪ d))) |
28 | | ax-a2 31 |
. . . . . . . . . . 11
((a ∪ b) ∪ (c
∩ d)) = ((c ∩ d) ∪
(a ∪ b)) |
29 | 11 | df-le2 131 |
. . . . . . . . . . . . 13
((a ∩ b) ∪ (a
∪ b)) = (a ∪ b) |
30 | 29 | lor 70 |
. . . . . . . . . . . 12
((c ∩ d) ∪ ((a
∩ b) ∪ (a ∪ b))) =
((c ∩ d) ∪ (a
∪ b)) |
31 | 30 | ax-r1 35 |
. . . . . . . . . . 11
((c ∩ d) ∪ (a
∪ b)) = ((c ∩ d) ∪
((a ∩ b) ∪ (a
∪ b))) |
32 | | or12 80 |
. . . . . . . . . . 11
((c ∩ d) ∪ ((a
∩ b) ∪ (a ∪ b))) =
((a ∩ b) ∪ ((c
∩ d) ∪ (a ∪ b))) |
33 | 28, 31, 32 | 3tr 65 |
. . . . . . . . . 10
((a ∪ b) ∪ (c
∩ d)) = ((a ∩ b) ∪
((c ∩ d) ∪ (a
∪ b))) |
34 | 33 | lan 77 |
. . . . . . . . 9
(((a ∩ b) ∪ (c
∪ d)) ∩ ((a ∪ b) ∪
(c ∩ d))) = (((a
∩ b) ∪ (c ∪ d))
∩ ((a ∩ b) ∪ ((c
∩ d) ∪ (a ∪ b)))) |
35 | | leo 158 |
. . . . . . . . . . . . . . . 16
a ≤ (a ∪ b) |
36 | 35, 4 | letr 137 |
. . . . . . . . . . . . . . 15
a ≤ (c ∪ d)⊥ |
37 | 36 | lecom 180 |
. . . . . . . . . . . . . 14
a C (c ∪ d)⊥ |
38 | 37 | comcom7 460 |
. . . . . . . . . . . . 13
a C (c ∪ d) |
39 | 38 | comcom 453 |
. . . . . . . . . . . 12
(c ∪ d) C a |
40 | | leor 159 |
. . . . . . . . . . . . . . . 16
b ≤ (a ∪ b) |
41 | 40, 4 | letr 137 |
. . . . . . . . . . . . . . 15
b ≤ (c ∪ d)⊥ |
42 | 41 | lecom 180 |
. . . . . . . . . . . . . 14
b C (c ∪ d)⊥ |
43 | 42 | comcom7 460 |
. . . . . . . . . . . . 13
b C (c ∪ d) |
44 | 43 | comcom 453 |
. . . . . . . . . . . 12
(c ∪ d) C b |
45 | 39, 44 | fh3r 475 |
. . . . . . . . . . 11
((a ∩ b) ∪ (c
∪ d)) = ((a ∪ (c ∪
d)) ∩ (b ∪ (c ∪
d))) |
46 | | leo 158 |
. . . . . . . . . . . . . . . 16
c ≤ (c ∪ d) |
47 | 4 | lecon3 157 |
. . . . . . . . . . . . . . . 16
(c ∪ d) ≤ (a ∪
b)⊥ |
48 | 46, 47 | letr 137 |
. . . . . . . . . . . . . . 15
c ≤ (a ∪ b)⊥ |
49 | 48 | lecom 180 |
. . . . . . . . . . . . . 14
c C (a ∪ b)⊥ |
50 | 49 | comcom7 460 |
. . . . . . . . . . . . 13
c C (a ∪ b) |
51 | 50 | comcom 453 |
. . . . . . . . . . . 12
(a ∪ b) C c |
52 | | leor 159 |
. . . . . . . . . . . . . . . 16
d ≤ (c ∪ d) |
53 | 52, 47 | letr 137 |
. . . . . . . . . . . . . . 15
d ≤ (a ∪ b)⊥ |
54 | 53 | lecom 180 |
. . . . . . . . . . . . . 14
d C (a ∪ b)⊥ |
55 | 54 | comcom7 460 |
. . . . . . . . . . . . 13
d C (a ∪ b) |
56 | 55 | comcom 453 |
. . . . . . . . . . . 12
(a ∪ b) C d |
57 | 51, 56 | fh3 471 |
. . . . . . . . . . 11
((a ∪ b) ∪ (c
∩ d)) = (((a ∪ b) ∪
c) ∩ ((a ∪ b) ∪
d)) |
58 | 45, 57 | 2an 79 |
. . . . . . . . . 10
(((a ∩ b) ∪ (c
∪ d)) ∩ ((a ∪ b) ∪
(c ∩ d))) = (((a
∪ (c ∪ d)) ∩ (b
∪ (c ∪ d))) ∩ (((a
∪ b) ∪ c) ∩ ((a
∪ b) ∪ d))) |
59 | 58 | ax-r1 35 |
. . . . . . . . 9
(((a ∪ (c ∪ d))
∩ (b ∪ (c ∪ d)))
∩ (((a ∪ b) ∪ c)
∩ ((a ∪ b) ∪ d))) =
(((a ∩ b) ∪ (c
∪ d)) ∩ ((a ∪ b) ∪
(c ∩ d))) |
60 | 34, 59, 20 | 3tr1 63 |
. . . . . . . 8
(((a ∪ (c ∪ d))
∩ (b ∪ (c ∪ d)))
∩ (((a ∪ b) ∪ c)
∩ ((a ∪ b) ∪ d))) =
((a ∩ b) ∪ ((c
∪ d) ∩ ((c ∩ d) ∪
(a ∪ b)))) |
61 | 26, 27, 60 | 3tr 65 |
. . . . . . 7
((((a ∪ b) ∪ c)
∩ (a ∪ (c ∪ d)))
∩ (((a ∪ b) ∪ d)
∩ (b ∪ (c ∪ d)))) =
((a ∩ b) ∪ ((c
∪ d) ∩ ((c ∩ d) ∪
(a ∪ b)))) |
62 | 25, 61 | ax-r2 36 |
. . . . . 6
((a ∪ c) ∩ (b
∪ d)) = ((a ∩ b) ∪
((c ∪ d) ∩ ((c
∩ d) ∪ (a ∪ b)))) |
63 | 20, 62, 34 | 3tr1 63 |
. . . . 5
((a ∪ c) ∩ (b
∪ d)) = (((a ∩ b) ∪
(c ∪ d)) ∩ ((a
∪ b) ∪ (c ∩ d))) |
64 | 3, 6 | com2or 483 |
. . . . . 6
(a ∪ b) C ((a
∩ b) ∪ (c ∪ d)) |
65 | | leao1 162 |
. . . . . . . . . 10
(c ∩ d) ≤ (c ∪
d) |
66 | 65, 47 | letr 137 |
. . . . . . . . 9
(c ∩ d) ≤ (a ∪
b)⊥ |
67 | 66 | lecom 180 |
. . . . . . . 8
(c ∩ d) C (a
∪ b)⊥ |
68 | 67 | comcom7 460 |
. . . . . . 7
(c ∩ d) C (a
∪ b) |
69 | 68 | comcom 453 |
. . . . . 6
(a ∪ b) C (c
∩ d) |
70 | 64, 69 | fh2 470 |
. . . . 5
(((a ∩ b) ∪ (c
∪ d)) ∩ ((a ∪ b) ∪
(c ∩ d))) = ((((a
∩ b) ∪ (c ∪ d))
∩ (a ∪ b)) ∪ (((a
∩ b) ∪ (c ∪ d))
∩ (c ∩ d))) |
71 | 63, 70 | ax-r2 36 |
. . . 4
((a ∪ c) ∩ (b
∪ d)) = ((((a ∩ b) ∪
(c ∪ d)) ∩ (a
∪ b)) ∪ (((a ∩ b) ∪
(c ∪ d)) ∩ (c
∩ d))) |
72 | | ax-a3 32 |
. . . 4
(((((a ∩ b) ∩ (a
∪ b)) ∪ ((c ∪ d) ∩
(a ∪ b))) ∪ ((a
∩ b) ∩ (c ∩ d)))
∪ ((c ∪ d) ∩ (c
∩ d))) = ((((a ∩ b) ∩
(a ∪ b)) ∪ ((c
∪ d) ∩ (a ∪ b)))
∪ (((a ∩ b) ∩ (c
∩ d)) ∪ ((c ∪ d) ∩
(c ∩ d)))) |
73 | 17, 71, 72 | 3tr1 63 |
. . 3
((a ∪ c) ∩ (b
∪ d)) = (((((a ∩ b) ∩
(a ∪ b)) ∪ ((c
∪ d) ∩ (a ∪ b)))
∪ ((a ∩ b) ∩ (c
∩ d))) ∪ ((c ∪ d) ∩
(c ∩ d))) |
74 | | ax-a3 32 |
. . . 4
((((a ∩ b) ∩ (a
∪ b)) ∪ ((c ∪ d) ∩
(a ∪ b))) ∪ ((a
∩ b) ∩ (c ∩ d))) =
(((a ∩ b) ∩ (a
∪ b)) ∪ (((c ∪ d) ∩
(a ∪ b)) ∪ ((a
∩ b) ∩ (c ∩ d)))) |
75 | 74 | ax-r5 38 |
. . 3
(((((a ∩ b) ∩ (a
∪ b)) ∪ ((c ∪ d) ∩
(a ∪ b))) ∪ ((a
∩ b) ∩ (c ∩ d)))
∪ ((c ∪ d) ∩ (c
∩ d))) = ((((a ∩ b) ∩
(a ∪ b)) ∪ (((c
∪ d) ∩ (a ∪ b))
∪ ((a ∩ b) ∩ (c
∩ d)))) ∪ ((c ∪ d) ∩
(c ∩ d))) |
76 | 73, 75 | ax-r2 36 |
. 2
((a ∪ c) ∩ (b
∪ d)) = ((((a ∩ b) ∩
(a ∪ b)) ∪ (((c
∪ d) ∩ (a ∪ b))
∪ ((a ∩ b) ∩ (c
∩ d)))) ∪ ((c ∪ d) ∩
(c ∩ d))) |
77 | 11, 65 | le2an 169 |
. . . . . . . . 9
((a ∩ b) ∩ (c
∩ d)) ≤ ((a ∪ b) ∩
(c ∪ d)) |
78 | | ancom 74 |
. . . . . . . . 9
((a ∪ b) ∩ (c
∪ d)) = ((c ∪ d) ∩
(a ∪ b)) |
79 | 77, 78 | lbtr 139 |
. . . . . . . 8
((a ∩ b) ∩ (c
∩ d)) ≤ ((c ∪ d) ∩
(a ∪ b)) |
80 | 79 | df-le2 131 |
. . . . . . 7
(((a ∩ b) ∩ (c
∩ d)) ∪ ((c ∪ d) ∩
(a ∪ b))) = ((c ∪
d) ∩ (a ∪ b)) |
81 | | ax-a2 31 |
. . . . . . 7
(((c ∪ d) ∩ (a
∪ b)) ∪ ((a ∩ b) ∩
(c ∩ d))) = (((a
∩ b) ∩ (c ∩ d))
∪ ((c ∪ d) ∩ (a
∪ b))) |
82 | 80, 81, 78 | 3tr1 63 |
. . . . . 6
(((c ∪ d) ∩ (a
∪ b)) ∪ ((a ∩ b) ∩
(c ∩ d))) = ((a ∪
b) ∩ (c ∪ d)) |
83 | 4 | ortha 438 |
. . . . . 6
((a ∪ b) ∩ (c
∪ d)) = 0 |
84 | 82, 83 | ax-r2 36 |
. . . . 5
(((c ∪ d) ∩ (a
∪ b)) ∪ ((a ∩ b) ∩
(c ∩ d))) = 0 |
85 | 84 | lor 70 |
. . . 4
(((a ∩ b) ∩ (a
∪ b)) ∪ (((c ∪ d) ∩
(a ∪ b)) ∪ ((a
∩ b) ∩ (c ∩ d)))) =
(((a ∩ b) ∩ (a
∪ b)) ∪ 0) |
86 | | or0 102 |
. . . 4
(((a ∩ b) ∩ (a
∪ b)) ∪ 0) = ((a ∩ b) ∩
(a ∪ b)) |
87 | 11 | df2le2 136 |
. . . 4
((a ∩ b) ∩ (a
∪ b)) = (a ∩ b) |
88 | 85, 86, 87 | 3tr 65 |
. . 3
(((a ∩ b) ∩ (a
∪ b)) ∪ (((c ∪ d) ∩
(a ∪ b)) ∪ ((a
∩ b) ∩ (c ∩ d)))) =
(a ∩ b) |
89 | | lear 161 |
. . . 4
((c ∪ d) ∩ (c
∩ d)) ≤ (c ∩ d) |
90 | | leid 148 |
. . . . 5
(c ∩ d) ≤ (c ∩
d) |
91 | 65, 90 | ler2an 173 |
. . . 4
(c ∩ d) ≤ ((c
∪ d) ∩ (c ∩ d)) |
92 | 89, 91 | lebi 145 |
. . 3
((c ∪ d) ∩ (c
∩ d)) = (c ∩ d) |
93 | 88, 92 | 2or 72 |
. 2
((((a ∩ b) ∩ (a
∪ b)) ∪ (((c ∪ d) ∩
(a ∪ b)) ∪ ((a
∩ b) ∩ (c ∩ d))))
∪ ((c ∪ d) ∩ (c
∩ d))) = ((a ∩ b) ∪
(c ∩ d)) |
94 | 76, 93 | ax-r2 36 |
1
((a ∪ c) ∩ (b
∪ d)) = ((a ∩ b) ∪
(c ∩ d)) |